PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 10 | 1 |

Tytuł artykułu

A new cryptic species of Rhinolophus macrotis (Chiroptera: Rhinolophidae) from Jiangxi Province, China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A cryptic species of the big-eared horseshoe bat (Rhinolophus macrotis) was identified in Jiangxi Province, China, based on significant differences in echolocation frequencies and morphology. Consistent with the bimodal distribution of body sizes of R. macrotis specimens obtained from the same cave, we now consider this population to be comprised of two putative species; a large and a small form, with dominant echolocation call frequencies of 49 kHz and 65 kHz, respectively. Cytochrome b sequences of these two phonic forms diverged by 3.16–3.25%, a similar level of divergence to that between the large form and the outgroup, R. rex (3.33–3.77%). These differences strongly suggest that the two phonic forms are distinct species. We also found that the wing loading and aspect ratio of the small form was much lower than that of the large form, suggesting that the small form is capable of foraging in denser forest. Without dietary evidence, the ecological significance of the observed difference in echolocation call frequency between the two forms (16 kHz) remains unknown.

Wydawca

-

Rocznik

Tom

10

Numer

1

Opis fizyczny

p.1-10,fig.,ref.

Twórcy

autor
  • Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, 130024 Changchun, China
  • Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 130024 Changchun, China
autor
  • Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, 130024 Changchun, China
  • Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 130024 Changchun, China
autor
  • Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, 130024 Changchun, China
autor
  • Department of Physiological Science, University of California, Los Angeles, 90095 CA, USA
autor
  • Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, 130024 Changchun, China
autor
  • Institute of Applied Ecology, Chinese Academy of Science, 110016 Shenyang, China

Bibliografia

  • 1. G. M. Allen 1923. New Chinese bats. American Museum Novitates 85:1–8. Google Scholar
  • 2. K. Andersen 1905. On the bats of the Rhinolophus macrotis group, with descriptions of two new forms. Annual Magazine Natural History 16:289–292. Google Scholar
  • 3. K. Andersen 1907. Chiropteran notes. Annali del Museo Civico di Storia Naturale de Genova 3:5–45. Google Scholar
  • 4. E. L P. Anthony 1988. Age determination in bats. Pp 47–58. in Ecological and behavioral methods for the study of bats T. H. Kunz , editor. ed. Smithsonian Institution Press. Washington D.C. 533. pp. Google Scholar
  • 5. E. M. Barratt, R. Deaville, T. M. Burland, M. W. Bruford, G. Jones, P. A. Racey, and R. K. Wayne . 1997. DNA answers the call of pipistrelle bat species. Nature 387:138–139. Google Scholar
  • 6. E. Blyth 1844. Notices of various mammalia. Journal of the Asiatic Society Bengal 13:463–494. Google Scholar
  • 7. R. C K. Bowie, D. S. Jacobs, and P. J. Taylor . 1999. Resource use by two morphologically similar insectivorous bats (Nycteris thebaica and Hipposideros caffer). South African Journal of Zoology 34:27–33. Google Scholar
  • 8. R. D. Bradley and R. J. Baker . 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy 82:960–973. Google Scholar
  • 9. W. M. Brown, M. George Jr., and A. C. Wilson . 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA 76:1967–1971. Google Scholar
  • 10. G. Csorba and P. J J. Bates . 1995. A new subspecies of the horseshoe bat Rhinolophus macrotis from Pakistan (Chiroptera, Rhinolophidae). Acta Zoologica Academiae Scientiarum Hungaricae 41:285–293. Google Scholar
  • 11. G. Csorba, P. Ujhelyi, and N. Thomas . 2003. Horseshoe bats of the World (Chiroptera: Rhinolophidae) Alana Books. Shropshire, UK. 160. pp. Google Scholar
  • 12. B. Efron 1979. Bootstrap methods: another look at the Jack-knife. The Annals of Statistics 7:1–26. Google Scholar
  • 13. J. Felsenstein 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368–376. Google Scholar
  • 14. J. Felsenstein 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. Google Scholar
  • 15. J. S. Findley and D. E. Wilson . 1982. Echolocation, insect hearing, and feeding ecology of insectivorous bats. Pp 243–260. in Ecology of bats T. H. Kunz , editor. ed. Plenum Press. New York. 425. pp. Google Scholar
  • 16. C. M. Francis and J. Habersetzer . 1998. Interspecific and intraspecific variation in echolocation call frequency and morphology of horseshoe bats, Rhinolophus and Hipposideros. Pp 169–179. in Bats: biology and conservation T. H. Kunz and P. A. Racey , editors. eds. Smithsonian Institution Press. Washington D.C. 365. pp. Google Scholar
  • 17. C. M. Francis, A. Guillén, and M. F. Robinson . 1999. Order Chiroptera: bats. Pp 225–235. in Wildlife in Lao PDR: 1999 status report J. W. Duckworth, R. E. Salter, and K. Khounboline , editors. eds. IUCN. Vientiane, Lao PDR. 275. pp. Google Scholar
  • 18. O. Gascuel 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution 14:685–695. Google Scholar
  • 19. S. Guindon and O. Gascuel . 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696–704. Google Scholar
  • 20. N. Gyldenstolpe 1917. Zoological results of the Swedish zoological expeditions to Siam. V. Mammals II. Kungliga Svenska Vetenskapsakademiens Handlingar, Stockholm 57:1–59. Google Scholar
  • 21. M. Hasegawa, H. Kishino, and T. Yano . 1985. Dating the human — ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160–174. Google Scholar
  • 22. K. G. Heller and O. von Helversen . 1989. Resource partitioning of sonar frequency bands in rhinolophid bats. Oecologia 80:178–186. Google Scholar
  • 23. D. K. Hendrichsen, P. J J. Bates, B. D. Hayes, and J. L. Walston . 2001. Recent records of bats (Mammalia: Chiroptera) from Vietnam with six species new to the country. Myotis 39:35–122. Google Scholar
  • 24. Y. Hochberg 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802. Google Scholar
  • 25. R. D. Houston, A. M. Boonman, and G. Jones . 2004. Do echolocation signal parameters restrict bats' choice of prey. Pp 339–345. in Echolocation in bats and dolphins J. A. Thomas, C. F. Moss, and M. Vater , editors. eds. University of Chicago Press. Chicago. 631. pp. Google Scholar
  • 26. J. P. Huelsenbeck and F. Ronquist . 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. Google Scholar
  • 27. P. Hulva and I. Horáček . 2006. Cryptic sympatric diversity in Emballonura alecto: further bat species. Acta Chiropterologica 8:537–542. Google Scholar
  • 28. P. Hulva, I. Horáček, P. P. Strelkov, and P. Benda . 2004. Molecular architecture of Pipistrellus pipistrellus/Pipistrellus pygmaeus complex (Chiroptera: Vespertilionidae): further cryptic species and Mediterranean origin of the divergence. Molecular Phylogenetics and Evolution 32:1023–1035. Google Scholar
  • 29. C. Ibáñez, J. L. García-Mudarra, M. Ruedi, B. Stadelmann, and J. Juste . 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica 8:277–297. Google Scholar
  • 30. N. R. Ingle and L. R. Heaney . 1992. A key to the bats of the Philippine Islands. Fieldiana: Zoology (N.S.) 69:1–44. Google Scholar
  • 31. D. M. Irwin, T. D. Kocher, and A. C. Wilson . 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32:128–144. Google Scholar
  • 32. D. S. Jacobs, G. N. Eick, M. C. Schoeman, and C. A. Matthee . 2006. Cryptic species in an insectivorous bats, Scotophilus dinganii. Journal of Mammalogy 87:161–170. Google Scholar
  • 33. D. S. Jacobs, R. M R. Barclay, and M. H. Walker . 2007. The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern. Oecologia 152:583–594. Google Scholar
  • 34. G. Jones and K. E. Barlow . 2004. Cryptic species of echo-locating bats. Pp 345–349. in Echolocation in bats and dolphins J. A. Thomas, C. F. Moss, and M. Vater , editors. eds. The University of Chicago Press. Chicago. 631. pp. Google Scholar
  • 35. A. Kiefer, F. Mayer, J. Kosuch, O. von Helversen, and M. Veith . 2002. Conflicting molecular phylogenies of European long-eared bats (Plecotus) can be explained by cryptic diversity. Molecular Phylogenetics and Evolution 25:557–566. Google Scholar
  • 36. T. Kingston and S. J. Rossiter . 2004. Harmonic-hopping in Wallacea's bats. Nature 429:654–657. Google Scholar
  • 37. T. Kingston, M. C. Lara, G. Jones, Z. Akbar, T. H. Kunz, and C. J. Schneider . 2001. Acoustic divergence in two cryptic Hipposideros species: a role for social selection. Proceedings of the Royal Society of London 268B:1381–1386. Google Scholar
  • 38. T. D. Kocher, W. K. Thomas, A. Meyer, S. V. Edwards, S. Pääbo, F. X. Villablanca, and A. C. Wilson . 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the USA 86:6196–6200. Google Scholar
  • 39. M. Y. Liu, Y. H. Xie, and D. M. Jie . 2000. A complete checklist of vertebrate in China Liaoning University Publishing House. Liaoning. 970. pp. Google Scholar
  • 40. R. Luo 1993. The mammalian fauna of Guizhou, Guizhou Guizhou Science and Technology Publishing House. Guiyang. 422. pp. Google Scholar
  • 41. F. Mayer and O. von Helversen . 2001a. Cryptic diversity in European bats. Proceedings of the Royal Society of London 268B:1825–1832. Google Scholar
  • 42. F. Mayer and O. von Helversen . 2001b. Sympatric distribution of two cryptic bat species across Europe. Biological Journal of the Linnean Society 74:365–374. Google Scholar
  • 43. C. M. Miller-Butterworth, G. Eick, D. S. Jacobs, M. C. Schoeman, and E. H. Harley . 2005. Genetic and phenotypic differences between South African long-fingered bats, with a global miniopterine phylogeny. Journal of Mammalogy 86:1121–1135. Google Scholar
  • 44. U. M. Norberg and J. M V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia, Chiroptera) wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London 316B:335–427. Google Scholar
  • 45. D. Posada and K. A. Crandall . 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. Google Scholar
  • 46. J. D. Pye 1972. Bimodal distribution of constant frequencies in some hipposiderid bats (Mammalia: Hipposideridae). Journal of Zoology (London) 166:323–335. Google Scholar
  • 47. J. D. Pye 1993. Is fidelity futile? The ‘true’ signal is illusory, especially with ultrasound. Bioacoustics 4:271–286. Google Scholar
  • 48. M. Ruedi and F. Mayer . 2001. Molecular systematics of bats of genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution 21:436–448. Google Scholar
  • 49. H-U. Schnitzler and E. K V. Kalko . 2001. Echolocation by insect-eating bats. Bioscience 51:557–569. Google Scholar
  • 50. J. A. Simmons 2005. Order Chiroptera. Pp 312–525. in Mammal species of the World: a taxonomic and geographic reference 3rd edition D. E. Wilson and D. M. Reeder , editors. eds. The Johns Hopkins University Press. Baltimore. 2142. pp. Google Scholar
  • 51. D. L. Swofford 2002. PAUP*: Phylogenetic analysis using parsimony (and other methods) 4.0 beta Sinauer Associates, Inc. Sunderland. Google Scholar
  • 52. A. Thabah, S. J. Rossiter, T. Kingston, S. Y. Zhang, S. Parsons, K. M. Mya, A. Zubaid, and G. Jones . 2006. Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s.l. (Chiroptera: Hipposideridae) from the Indo-Malayan region. Biological Journal of the Linnean Society 88:119–130. Google Scholar
  • 53. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins . 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876–4882. Google Scholar
  • 54. Y. X. Wang 2003. A complete checklist of mammal species and subspecies in China: a taxonomic and geographic reference China Forestry Publishing House. Beijing, China. 394. pp. Google Scholar
  • 55. A. D. Yoder, R. M. Rasoloarison, S. M. Goodman, J. A. Irwin, S. Atsalis, M. J. Ravosa, and J. U. Ganzhorn . 2000. Remarkable species diversity in Malagasy mouse lemurs (Primates, Microcebus). Proceedings of the National Academy of Sciences of the USA 97:11325–11330. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4a9dba93-446a-4004-921b-dafd43d70af4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.