PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 13 part II |

Tytuł artykułu

Beyond salty reins – modelling benthic species' spatial response to their physical environment in the Pomeranian Bay (Southern Baltic Sea)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The brackish water environment of the Baltic Sea is dominated by a strong gradient of salinity and along with salinity the benthic diversity decreases – salinity is regarded as the master factor regulating benthic diversity in brackish habitats. In this scheme, consistently small patches of comparatively higher or lower benthic diversity do emerge in areas where either environmental or anthropogenic impacts on the benthic habitat change drastically over short spatial distances. Hence, spatial diversity of ecological factors creates diversity among benthic colonization and community structures. We show through a logistic modeling approach the possibility to predict thereby induced benthic colonization areas and community structures inside the broad scheme of a brackish water habitat. This study bases upon quantitative macrozoobenthic abundance data collected over a period of 4 years. It clearly demonstrates the need to analyze species’ relationships in gradient systems such as the Baltic Sea and provides a tool to predict natural and anthropogenic forced changes in species distribution.

Wydawca

-

Rocznik

Opis fizyczny

p.79-95,fig.,ref.

Twórcy

autor
autor
  • Department of Biology, Leibniz Institute for Baltic Sea Research (IOW), Seestr.15, D-18119 Warnemuende, Germany

Bibliografia

  • Austin M.P., 1987. Models for the analysis of species’response to environmental gradients. Plant. Ecol. 69, 35-45.
  • Bonsdorff E., Laine A.O., Hanninen J., Vuorinen I., Norkko A., 2003. Zoobenthos of the outer archipelago waters (N. Baltic Sea) – the importance of local conditions for spatial distribution patterns. Boreal. Env. Res., 8, 135-145.
  • Bonsdorff E., 2006. Zoobenthic diversity-gradients in the Baltic Sea: Continuous post-glacial succession in a stressed ecosystem. J. Exp. Mar. Biol. Ecol., 330, 383-391.
  • Bourget E., Fortin M.-J., 1995. A commentary on current approaches in the aquatic sciences. Hydrobiologia, 300/301, 1-16.
  • Burnham K. P., Anderson D. R., 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33-2, 261-304.
  • Coudun Ch., Gegout J.-C., 2006. The derivation of species response curves with Gaussian logistic regression is sensitive to sampling intensity and curve characteristics. Ecol. Model., 199, 164-175.
  • Diaz R.J., 1984. Short term dynamics of the dominant annelids in a polyhaline temperate estuary. Hydrobiologia, 115, 153-158.
  • Dubilier N., Giere O., Grieshaber M.K., 1994. Concomitant effects of sulfide and hypoxia on the aerobic metabolism of 241 the marine oligochaete Tubificoides benedii. J. Exp. Zool., 269, 287-297.
  • Ellis J., Ysebaert T., Hume T., Norkko A., Bult T., Herman P., Thrush S., Oldman J., 2006. Predicting macrofaunal species distribution in estuarine gradients using logistic regression and classification systems. Mar. Ecol. Prog. Ser., 316, 69-83.
  • ESRI, 2003. ESRI Data & Maps 2003. Media Kit. ESRI, Redlands, California, USA.
  • Folk R.L., Ward W.C., 1957. Brazos river bar, a study in the significance of grain size parameters. J. Sed. Petrol., 27, 3-26.
  • Forster S., Bobertz B., Bohling B., 2003. Permeability of sands in the coastal areas of the southern Balic Sea, Mapping a grain-size related sediment property. Aquat. Geochem., 9, 171-190.
  • Forster S., Zettler M.L., 2004. The capacity of the filter-feeding bivalve Mya arenaria L. to affect water transport in sandy beds. Marine Biology, V144(6), 1183-1189.
  • Fortin M.-J., Keitt T.H., Maurer B.A., Taper M.L., Kaufman D.M., Blackburn T.M., 2005. Species’ geographic ranges and distributional limits, pattern analysis and statistical issues. Oikos, 108, 7-17.
  • Giere O., Preusse J.-H., Dubilier N., 1999. Tubificoides benedii (Tubificidae, Oligochaeta) – a pioneer in hypoxic and sulfidic environments. An overview of adaptive pathways. Hydrobiologia, 406, 235-241.
  • Giere O., 2006. Ecology and biology of marine Oligochaeta - an inventory rather than another review. Hydrobiologia, 564, 103-116.
  • Glockzin M., Zettler M.L., 2008 Spatial macrozoobenthic distribution patterns in relation to major environmental factors – a case study from the Pomeranian Bay (southern Baltic Sea). J. Sea Res., 59, 144-161.
  • Gogina M.A., Zettler M.L., Glockzin M., 2010. Distribution of benthic macrofaunal coenoses in the western Baltic Sea with regard to near-bottom environmental parameters. Part 2. Modelling and prediction. J. Mar. Syst., 80 (1-2), 57-70.
  • Guisan A., Weiss S.B., Weiss A.D., 1999. GLM versus CCA spatial modelling of plant species distribution. Plant Ecol., 143, 107-122.
  • Guisan A., Zimmermann N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3),147-186.
  • Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009
  • Guisan A., Lehman A., Ferrier S., Austin M., Overton J.M.C.C., Aspinall R., Hastie T., 2006.
  • Making better biogeographical predictions of species’ distributions. J. Appl. Ecol., 43, 386-392.
  • HELCOM, 1988. Guidelines for the Baltic Monitoring Programme for the Third Stage, Part D. Biological Determinants. Baltic Sea Environmental Proceedings, 27.
  • Huston M.A., 2002. Critical issues for improving predictions. In: Predicting Species Occurrences: Issues of Accuracy and Scale. (Eds.), J.M. Scott, P.J. Heglund, M.L. Morrison, J.B. Haufler, M.G. Raphael, W.A. Wall, F.B. Samson, Island Press, Washington, 7-21.
  • Keitt T.H., Bjornstad O.N., Dixon P.M., Citron-Pousty S., 2002. Accounting for spatial pattern when modelling organism-environment interactions. Ecography, 25, 616-625.
  • Kroncke I., Stoeck T., Wieking G., Palojarvi A., 2004. Relationship between structural and functional aspects of microbial and macrofaunal communities in different areas of the North Sea. Mar. Ecol. Prog. Ser., 282, 13-31.
  • Krumbein W.C., Monk G.D., 1942. Permeability as a function of the size parameters of unconsolidated sand. American Institute Mining and Metallurgy Engineering, Petroleum Technology, Technical Publikation no. 1942.
  • Kube J., Powilleit M., Warzocha J., 1996. The importance of hydrodynamic processes and food availability for the structure of macrofauna assemblages in the Pomeranian Bay (Southern Baltic Sea). Arch. Hydrobiol., 138, 213-228.
  • Kuhrts C., Seifert T., Fennel W., 2006. Modelling transport of fluff layer material in the Baltic Sea. Hydrobiologia, 554, 25-30.
  • Legendre P., Legendre L., 1998. Numerical Ecology. Amsterdam, Elsevier Science B.V. Meissner K., Darr A., Rachor E., 2008. Development of habitat models for Nephtys species (Polychaeta: Nephtyidae) in the German Bight (North Sea). J. Sea Res., 60, 271-286.
  • Munoz J., Felicisimo A., 2004. A comparison between some statistical methods commonly used in predictive modelling. J. Veg. Sci., 15, 285-292.
  • Nicolaisen W., Kanneworff E., 1969. On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindstrom and Bathyporeia sarsi Watkin. Ophelia, 6, 231-250.
  • O’Brien K., Hanninen J., Kanerva T., Metsarinne L., Vuorinen I., 2003. Macrobenthic zonation in relation to major environmental factors across the Archipelago Sea, northern Baltic Sea. Boreal Env. Res., 8, 159-170.
  • Pastuszak M., Witek Z., Nakel K., Wielgat M., Grelowski A., 2005. Role of the Oder estuary (southern Baltic) in transformation of the riverine nutrient loads. J. Mar. Syst., 57, 30-54.
  • Pavlikakis G.E., Tsihrintzis V.A., 2000. Ecosystem Management: A Review of a New Concept and Methodology. Water Resour. Manag., 14, 257-283.
  • Pazdro K., Staniszewski A., Bełdowski J., Emeis K.-Ch., Leipe T., Pempkowiak J., 2001. Variations in organic matter bound in fluffy layer suspended matter from the Pomeranian Bay (Baltic Sea). Oceanologia, 43, 405-420.
  • Pearson T.H., Rosenberg R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16, 229-311.
  • Praca E., Gannier A., Das K., Laran S., 2008. Modelling the habitat suitability of cetaceans: Example of the sperm whale in the northwestern Mediterranean Sea. Deep-Sea Research, I, 648-657.
  • Sachs L., 1997. Angewandte Statistik. Anwendung statistischer Methoden. (Applied Statistics). Springer, Berlin, (in German).
  • Speybroeck J., Van Tomme J., Vincx M., Degraer S., 2008. In situ study of the autecology of the closely related, co-occurring sandy beach amphipods Bathyporeia pilosa and Bathyporeia sarsi. Helgol. Mar. Res., 62, 257-268.
  • Sundback K., Persson L.-E., 1981. The effect of microbenthic grazing by an amphipod, Bathyporeia pilosa, Lindstrom. Kieler Meeresforsch., 5, 573-575.
  • Thrush S.F., Hewitt J.E., Norkko A., Nicholls P.E., Funnell G.A., Ellis J.I., 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar. Ecol. Prog. Ser., 263, 101-112.
  • Warzocha J., 1995. Classification and structure of macrofaunal communities in the southern Baltic. Arch. Fish. Mar. Res., 42, 225-237.
  • Wisz M.S., Guisan A., 2009. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol., 9(8).
  • Ysebaert T., Meire P., Herman P.M.J., Verbeek H., 2002. Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser., 225, 79-95.
  • Zettler M.L., Bochert R., Bick A., 1994. Rohrenbau und Vertikalverteilung von Marenzelleria viridis (Polychaeta: Spionidae) in einem inneren Kustengewasser der sudlichen Ostsee. (Tube-building and vertical distribution of Marenzelleria viridis (Polychaeta: Spionidae) in an inner coastal water of the Southern Baltic Sea). Rostocker Meeresbiol. Beitr., 2, 215-225, (in German).
  • Zettler M.L., Rohner M., Frankowski J., 2006. Long term changes of macrozoobenthos in the Arkona Basin (Baltic Sea). Boreal Env. Res., 11, 247-260.
  • Zettler M.L., Schiedek D., Bobertz B. 2007. Benthic biodiversity indices versus salinity gradient in the southern Baltic Sea. Marine Pollution Bulletin, 55, 258-270.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4a782898-8f79-4df5-ac43-c84dd5bdbbf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.