PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 3 |

Tytuł artykułu

Characteristics of newly isolated Geobacillus sp. ZY-10 degrading hydrocarbons in crude oil

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An obligately thermophilic strain ZY-10 was isolated from the crude oil in a high-temperature oilfield, which was capable of degrading heavy crude oil. Phenotypic and phylogenetic analysis demonstrated that the isolate should be grouped in the genus Geobacillus, which shared the highest similarity (99%) of the 16S rDNA sequence to Geobacillus stearothermophilus. However, the major cellular fatty acid iso-15:0 (28.55%), iso-16:0 (24.93%), iso-17:0 (23.53%) and the characteristics including indole production, tolerance to NaN₃ and carbohydrate fermentation showed some difference from the recognized species in the genus Geobacillus. The isolate could use tridecane, hexadecane, octacosane and hexatridecane as sole carbon source for cell growth, and the digesting rate of long-chain alkane was lower than that of short-chain alkane. When the isolate was cultured in the heavy crude oil supplement with inorganic salts and trace yeast extract, the concentration of short-chain alkane was significantly increased and the content of long-chain alkane was decreased, suggesting that the larger hydrocarbon components in crude oil were degraded into shorter-chain alkane. Strain ZY-10 would be useful for improving the mobility of crude oil and upgrading heavy crude oil in situ.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.253-263,fig.,ref.

Twórcy

autor
  • School of Biological Engineering, Dalian Polytechnic University, Dalian, PR China
autor
  • School of Biological Engineering, Dalian Polytechnic University, Dalian, PR China
autor
  • School of Biological Engineering, Dalian Polytechnic University, Dalian, PR China
autor
  • School of Biological Engineering, Dalian Polytechnic University, Dalian, PR China

Bibliografia

  • Altschul S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
  • Brown, L.R. 2010. Microbial enhanced oil recovery (MEOR). Curr.Opin. Microbiol. 13: 316–320.
  • Caccamo D., C. Gugliandolo, E. Stackebrandt and T.L. Maugeri. 2000. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int. J. Syst. Evol. Microbiol. 50: 2009–2012.
  • Cole J.R., B. Chai, T.L. Marsh, R.J. Farris, Q. Wang, S. Kulam, S. Chandra, D. McGarrell, T.M. Schmidt and G.M. Garrity. 2003. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31: 442–443.
  • Coorevits A., A.E. Dinsdale, G. Halket, L. Lebbe, P. De Vos, A. Van Landschoot and N.A. Logan. 2011. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G.stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Syst. Appl. Microbiol. 34: 419–423.
  • Etoumi A. 2007. Microbial treatment of waxy crude oils for mitigation of wax precipitation. J. Petrol. Sci. Eng. 55: 111–121.
  • Feitkenhauer H., R. Müller and H. Märkl. 2003. Degradation of polycyclic aromatic hydrocarbons and long chain alkanesat 60–70°C by thermus and Bacillus spp. Biodegradation. 14: 367–372.
  • Feng L., W. Wang, J. Cheng, Y. Ren, G. Zhao, C. Gao, Y. Tang, X. Liu, W. Han, X. Peng and others. 2007. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc. Natl. Acad. Sci. U. S. A. 104: 5602–5607.
  • Fox G.E., J.D. Wisotzkey and P. Jurtshuk. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170.
  • Giger W. and M. Blumer. 1974. Polycyclic aromatic hydrocarboms in the environment isolation and characterization by chromatography, visible, ultraviolet, and mass spectrometry [J]. Anal. Chem. 46:1663–1671.
  • Gudiña E.J., J.F.B. Pereira, L.R. Rodrigues, J.A.P. Coutinho and J.A. Teixeira. 2012. Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. Int. Biodeterior. Biodegrad. 68: 56–64.
  • Hagström Å., T. Pommier, F. Rohwer, K. Simu, W. Stolte, D. Svensson and U.L. Zweifel. 2002. Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl. Environ. Microbiol. 68: 3628–3633.
  • Halasinski T.M., F. Salama and L.J. Allamandola. 2005. Investigation of the ultraviolet, visible, and near-infrared absorption spectra of hydrogenated polycyclic aromatic hydrocarbons and their cations. Ap. J. 628: 555–566
  • Hao R. and A. Lu. 2009. Biodegradation of heavy oils by halophilic bacterium. Prog. Nat. Sci. 19: 997–1001.
  • Hao R., A. Lu and Y. Zeng. 2004. Effect on crude oil by thermophilic bacterium. J. Petrol. Sci. Eng. 43: 247–258.
  • Hasanuzzaman M., A. Ueno, H. Ito, Y. Ito, Y. Yamamoto, I. Yumoto and H. Okuyama. 2007. Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG. Int. Biodeterior. Biodegrad. 59: 40–43.
  • Kaneda T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Mol. Biol. R. 55: 288–302.
  • Kohr W.J. 2011. Microbial enhanced oil recovery methods, U.S. Patent 2011/0067856. filed Aug. 26, 2010, and issued Mar. 24, 2011. Leon V. and M. Kumar. 2005. Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 10(6):471–481
  • Li X., C. Zhao, Q. An and D. Zhang. 2003. Substrate induction of isomaltulose synthase in a newly isolated Klebsiella sp. LX3. J. Appl. Microbiol. 95: 521–527.
  • Liu Y.C., T.T. Zhou, J. Zhang, L. Xu, Z.H. Zhang, Q.R. Shen and B. Shen. 2009. Molecular characterization of the alkB gene in the thermophilic Geobacillus sp. strain MH-1. Res. Microbiol. 160: 560–566.
  • Mille G., M. Almallah, M. Bianchi, F. Wambeke and J.C. Bertrand. 1991. Effect of salinity on petroleum biodegradation. Fresenius J. Anal. Chem. 339: 788–791
  • Meintanis C., K.I. Chalkou, K.A. Kormas and A.D. Karagouni. 2006. Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation 17: 3–9.
  • Muligan C.N., R.N. Yong, B.F. Gibbs. 2001. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60: 371–380.
  • Murray R.G.E., R.N. Doetsch and C.F. Robinow. 1994. Determinative and cytological light microscopy, pp. 22–41. In: Gerhardt, P., R.G.E. Murray, W.A. Wood and N.R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington D.C.
  • Nazina T.N., T.P. Toruova, A.B. Poltaraus, E.V. Novikova, A.A. Grigoryan, A.E. Ivanova, A.M. Lyseko, V.V. Petrunyaka, G.A. Osipov, S.S. Belyaev and others. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. S yst. Evol. Microbiol. 51: 433–446.
  • Premuzic E.T. and M.S. Lin. 1999. Induced biochemical conversions of heavy crude oils. J. Petrol. Sci. Eng. 22: 171–180.
  • Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  • Sen R. 2008. Biotechnology in petroleum recovery: the microbial EOR. Prog. Energy Combust. Sci. 34: 714–724.
  • Smibert R.M. and N.R. Krieg. 1994. Phenotypic characterization. pp. 607–654 In: Gerhardt P., R.G..E. Murray, W.A. Wood and N.R. Krieg (eds). Methods for General and Molecular Bacteriology. ASM Press, Washington, D.C.
  • Sood N. and B. Lal 2008. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems. Chemosphere 70: 1445–1451.
  • Sorkhoh N.A., A.S. Ibrahim, M.A. Ghannoum and S.S. Radwan. 1993. High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl. Microbiol. Biotechnol. 39: 123–126.
  • Tighe S.W., P. de Lajudie, K. Dipietro, K. Lindstrom, G. Nick, and B.D.W. Jarvis. 2000. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int. J. Syst. Evol. Microbiol. 50: 787–801.
  • Wagner-Döbler I., H. Rheims, A. Felske, A. El-Ghezal, D. Flade-Schröder, H. Laatsch, S. Lang, R. Pukall and B.J. Tindall. 2004. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int. J. Syst. Evol. Microbiol. 54: 1177–1184.
  • Wang X.B., C.Q. Chi, Y. Nie, Y.Q. Tang, Y. Tan, G.. Wu and X.L. Wu. 2011. Degradation of petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain. Bioresour. Technol. 102: 7755–7761.
  • Wentzel A., T.E. Ellingsen, H.K. Kotlar, S.B. Zotchev and M. Throne-Holst. 2007. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 76: 1209–1221.
  • White D., R.J. Sharp and F.G. Priest. 1993. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Van Leeuwenhoek 64: 357–386.
  • Zheng C., L. Yu, L. Huang, J. Xiu and Z. Huang. 2012. Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J. Petrol. Sci. Eng. 81: 49–56.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4a13ea83-8ff4-4ee1-a8d1-943e11e37b00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.