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S u m m a r y. The problem of a weighted least-squares ap-
proximation of viscoelastic material by generalized Maxwell 
model is discussed when only the noise-corrupted time-mea-
surements of the relaxation modulus are accessible for identi-
fi cation. To build a Maxwell model, which does not depend on 
sampling instants is a basic concern. It is shown that even when 
the true relaxation modulus description is completely unknown, 
the approximate optimal Maxwell model parameters can be de-
rived from the measurement data sampled randomly according 
to appropriate randomization. The determined approximate 
model is a strongly consistent estimate of the requested model. 
An identifi cation algorithm leading to the best model will be 
presented in the forthcoming paper, in which the convergence 
analysis will be also conducted. A motivating example is given. 

K e y  w o r d s : viscoelasticity, relaxation modulus, Max-
well model, model identifi cation

INTRODUCTION

Viscoelastic materials present a behaviour that 
implies dissipation and storage of mechanical energy. 
Viscoelastic models are used before all to modelling of 
different polymeric liquids and solids [3, 6, 14], concrete 
[1], soils [13], rubber [30], glass [5, 23], foods [2, 20, 
22, 24]. Research studies conducted during the past few 
decades proved that these models are also an important 
tool for studying the behaviour of biological materials: 
wood [28], fruits, vegetables [8, 10, 11, 20], animals tis-
sues [16], see also other papers cited therein. 

Viscoelasticity of the materials manifests itself in 
different ways, such as gradual deformation of a sample 
of the material under constant stress (creep behaviour), 
and stress relaxation in the sample when it is subjected to 
a constant strain [6, 20, 29]. In general, viscoelasticity is 
a phenomenon associated with time variations in a mate-
rial’s response. In an attempt to describe some of the above 
effects mathematically several constitutive laws have been 
proposed which describe the stress–strain relations in 

terms of quantities like creep compliance, relaxation mod-
ulus, the storage and loss moduli and dynamic viscosity. 
Some of these constitutive laws have been developed with 
the aid of mechanical models consisting of combinations 
of springs and viscous dashpots. The Maxwell model is, 
perhaps, the most representative example of such models.

The classical Maxwell model is a viscoelastic body 
that stores energy like a linearized elastic spring and dissi-
pates energy like a classical fl uid dashpot. Within the past 
40 years, advances in the Maxwell model study in the area 
of viscoelactic materials have been of three types. First 
the analysis of viscoelastic properties of such materials, 
e.g. elasticity, viscosity on the basis of Maxwell model, 
for example for polymers [3, 14], foods [2, 4, 20, 22, 
24], biological materials [8, 9, 16], soda-lime-silica glass 
[5]. Next, the application of Maxwell model to compute 
other material functions such as the creep compliance, 
time-variable bulk and shear modulus or time-variable 
Poisson’s ratio [27] or interconversion between linear 
viscoelastic material functions [19]. And fi nally, the de-
velopment of computational tools for Maxwell model de-
termining [21, 30]. This paper belongs to the latter group. 

We often determine the parameters in a model by 
obtaining the „best-possible” fi t to experimental data. 
The coeffi cients can be highly dependent on our way 
of measuring „best” [17]. Common choice of the model 
quality measure is the mean square approximation error, 
leading to a least-squares identifi cation problem. When 
the identifi cation index is fi xed, the coeffi cients can be 
also highly dependent on the measurement data. To make 
the idea a little clear we give an example of the four-
parameter Maxwell model determination of an confi ned 
cylindrical specimen of the beet sugar root.

To build a Maxwell model, which does not depend on 
sampling instants is a basic concern. We consider the prob-
lem of measurement point-independent approximation of 
a linear relaxation modulus of viscoelastic material within 
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the class of discrete generalized Maxwell models when 
the integral weighted square error is to be minimized 
and the true material description is completely unknown. 
We show how the problem can be solved by introducing 
an appropriate randomization on the set of sampling in-
stants at which the relaxation modulus of the material is 
measured. It is assumed that only the relaxation modulus 
measurements are accessible for identifi cation. The idea 
of measurement point-independent identifi cation was at 
fi rst used for noiseless zero-memory system approxima-
tion by random choice of inputs in co-author paper [12]. 

IDENTIFICATION 
OF THE MAXWELL MODEL

MATERIAL

We consider a linear viscoelastic material subjected 
to small deformations for which the uniaxial, nonaging 
and izotropic stress-strain equation can be represented 
by a Boltzmann superposition integral [6]:

( ) ( ) ( )
t

t G t dσ λ ε λ λ
−∞

= −∫ ɺ , (1)

where: (t) and (t) denotes the stress and stain, re-
spectively, and G(t) is the linear time-dependent relaxa-
tion modulus. The modulus G(t) is the stress, which is 
induced in the viscoelastic material described by equation 
(1) when the unit step strain (t) is imposed.

By assumption, the exact mathematical description of 
the relaxation modulus G(t) is completely unknown, but 
the value of G(t) can be measured with a certain accuracy 
for any given value of the time t T, where T = [0,T] and 
0<T<  or T = R

+
; here R

+
 = [0, ).

MAXWELL MODEL 

The generalized discrete Maxwell model, which is 
used to describe the relaxation modulus G(t), consists of 
a spring and n Maxwell units connected in parallel as illus-
trated in Figure 1. A Maxwell unit is a series arrangement 
of the Hooke and Newton’s elements: an ideal spring in se-
ries with a dashpot. This model presents a relaxation of ex-
ponential type given by a fi nite Dirichlet-Prony series [29]:

( )
1

j

n
t

M j

j

G t, E e E
ν−

∞
=

= +∑g , (2)

where: E
j
, v

j
 and E  represent the elastic modulus 

(relaxation strengths), relaxation frequencies and equi-
librium modulus (long-term modulus), respectively. The 
vector of model (2) parameters is defi ned as:

g = [E
1

E
n

v
1

v
n

E ]T. (3)

The modulus E
j
 and the viscosity 

j
 associated with 

the j–th Maxwell mode (see Figure 1) determine the 
relaxation frequency v

j
 = E

j
/

j
.
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Fig. 1. Generalized discrete Maxwell model with additional 
elastic element E  (Zeners’ model)

It is not assumed that the real relaxation modulus 
G(t) can be exactly represented within the chosen set of 
models (2), (3). The restriction that the model parameters 
are nonnegative and bounded must be given to satisfy 
the physical meaning, i.e. g G, where the admissible set 
of parameters G is compact subset of the space 2 1nR +

+ .

IDENTIFICATION OF THE MAXWELL MODEL

A classical manner of studying viscoelasticity is by 
two-phase stress relaxation test, where the time-dependent 
shear stress is studied for step increase in strain [20, 
29]. Suppose, a certain stress relaxation test performed 
on the specimen of the material under investigation re-
sulted in a set of measurements of the relaxation modu-
lus ( ) ( ) ( )i i iG t G t z t= +  at the sampling instants t

i
0,

i = 1, ,N, where z(t
i
) is measurement noise. Identifi cation 

consists of selecting within the given class of models 
(2), (3) such a model, which ensures the best fi t to the 
measurement results. As a measure of the model (2) ac-
curacy the mean sum of squares is taken:

( ) ( ) ( )
2

1

1 N

N i M i

i

Q G t G t ,
N =

 = − ∑g g . (4)

This is the least-squares criterion for Maxwell model. 
Therefore the least-squares Maxwell model identifi cation 
consists of determining the parameter gN minimizing 
the index (4) on the set G by solving the following op-
timization problem:

( ) ( )N N NQ min Q
∈

=
g

g g
G

. (5)

Exponential sum models are used frequently in ap-
plied research: time series in economics, biology, medi-
cine, heat diffusion and diffusion of chemical compounds 
in engineering and agriculture, physical sciences and 
technology, see, e.g., [7, 18]. Fitting data to exponen-
tial sums is a very old problem, which has been studied 
for a long time. Several articles have appeared mainly 
to fi nding optimal least-squares exponential sum ap-
proximations to sampled data. Holmström and Peters-
son [15] have reviewed known algorithms in much 
detail. 

The results of identifi cation, both the model param-
eters and the resulting relaxation modulus are (strongly) 
dependent on the measurement data, in particular of 
the sampling instants t

i
. This is best illustrated by an 

example.
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EXPERIMENT AND MOTIVATING EXAMPLE

A cylindrical sample of 20 mm diameter and height 
was obtained from the root of sugar beet Janus variety [9]. 
During the two-phase stress relaxation test performed by 
Go acki and co-workers at the University of Life Sciences 
in Lublin [9], in the fi rst initial phase the strain was im-
posed instantaneously, the sample was preconditioned at 
the 0.5 m·s-1 strain rate to the maximum strain. Next, dur-
ing the second phase at constant strain the corresponding 
time-varying force induced in the specimen was recorded 
during the time period [0,100] seconds in 40000 measure-
ment points with the constant sampling period t = 0.0025s. 
The experiment was performed in the state of uniaxial 
deformation; i.e. the specimen examined underwent defor-
mation in steel cylinder (for details see, for example, [9]). 
The modelling of mechanical properties of this material 
in linear-viscoelastic regime is justifi ed by the research 
results presented in a lot of works, for example [8]. For 
initial fi ltering of the force measurement data Savitzky-
Golay method has been used. Next, the respective relaxa-
tion modulus measurements were computed using a simple 
modifi cation of the well-known Zapas and Craft [29] rule:

( ) ( ) ( )02 2m,real m,realG t F t t p for t tε= + ≥ ,

where: t
m,real

 is the real time under which the induced 
force ( )F t  take the maximum value, 

0
 is the constant 

strain kept during the second phase of the test and p is 
the cross-section of the sample. 

Ta b l e  1 .  Maxwell model (6) parameters and the values of 
identifi cation index Q

N
(g

N
); equidistant-experiment

N Q
N
(g

N
)

Model parameters

E
1,N

[MPa]
E

2,N

[MPa]
v

1,N
 [s–1] v

2,N
 [s–1]

15 0,0025 10,563 3,9242 8,6049E-4 1,7521

20 0,0011 10,5135 3,8923 7,8748E-4 0,6296

25 0,0021 10,5368 3,8794 8,1408E-4 0,7776

40 0,0025 10,5372 3,9074 8,0998E-4 1,171

50 0,0029 10,5515 3,9133 8,3473E-4 1,4523

75 0,0032 10,5604 3,9521 8,4544E-4 2,1065

100 0,0037 10,5596 3,9946 8,4957E-4 2,6723

150 0,004 10,567 4,1043 8,5423E-4 4,2195

200 0,0044 10,5664 4,2017 8,5543E-4 5,4635

250 0,0042 10,5721 4,2935 8,6228E-4 6,7021

300 0,0047 10,5716 4,438 8,6447E-4 8,4651

350 0,0047 10,5733 4,483 8,6492E-4 9,0439

400 0,0046 10,5717 4,6187 8,6186E-4 10,6006

500 0,0046 10,5746 4,8924 8,6621E-4 13,7081

600 0,0048 10,5747 5,0389 8,6689E-4 15,2986

For N from the set N = {15,20,25,40,50,75,100,150,200
,250,300,350,400,500,600} equidistant sampling points t

i

have been taken in time interval [0,95] seconds, succes-
sively, and the respective relaxation modulus measure-
ments have been selected from the whole set of measure-
ment data. Next, the Levenberg-Marquardt optimization 
procedure was applied to solve the optimization task (5) 
and the four parameter Maxwell models:

( ) 1 2
1 2

t t
MG t E e E eν ν− −= + , (6)

where the elastic modulus E
i
 and the relaxation fre-

quencies v
i
, i = 1,2, were determined for each N. The 

results of the identifi cation, i.e. the optimal model pa-
rameters and the optimal values of the empirical index 
Q

N
(g) are given in Table 1.
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Fig. 2. (a) The distance d
N
 between the two successive Maxwell 

model parameters g
N
 and (b) the identifi cation index Q
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)

as a function of the number of measurements N; equidistant-
experiment

To illustrate the convergence of the Maxwell model 
parameters in Figure 2(a) the distance d

N
 = ||g

N
–g

[N]
||

2
,

where [N] is a direct predecessor of N in the set N, is 
shown as a function of N; here ||  ||

2
 denotes the Euclidean 

norm in the space R2n+1. The course of the model quality 
index as a function of N is illustrated in Fig. 2(b). The 
relaxation modulus computed according to the best ‘equi-
distant’ Maxwell models G

M
(t,g

N
) are plotted in Figure 3 

for a few values of the number of measurements, where 
the measurements ( )iG t  are also marked. However, the 
models G

M
(t,g

N
) does not differ signifi cantly (see Figure 

3), the model parameters differ essentially - compare 
Figure 2(a) and Table 1

The above example illustrates that the Maxwell model 
parameters will be highly dependent on the measurement 
data, if the sampling instants t

i
 are inappropriately chosen. 

This is a crucial point of the problem. Loosely speaking, 
the problem is, whether the identifi cation procedure will 
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yield a Maxwell model parameters which are asymptoti-
cally (when the number of measurements tends to infi nity) 
independent on the particular sampling instants. The issue 
involves aspects on whether the data set (i.e. the experi-
mental conditions) is informative enough to guarantee 
this convergence result. We show, that this problem can 
be satisfactorily solved by introducing a simple randomi-
zation on the sampling times set. 

METHODS AND RESULTS

OPTIMAL APPROXIMATION 

OF THE MAXWELL MODEL

As a measure of the model (2), (3) accuracy the global 
approximation error of the form:

( ) ( ) ( ) ( )2

MQ G t G t, t dtρ= −  ∫g g

T

, (7)

where a chosen weighting function (t) 0 is a density 
on T, i.e., 

T
(t)dt = 1, can be taken. Thus, the problem of 

the real relaxation modulus G(t) optimal approximation 
within the class of Maxwell models reduces, obviously, to 
determining the parameter g* minimizing the index Q(g)
on the set of admissible parameters G, i.e. takes the form:

( )arg min Q∗

∈
=

g
g g

G
, (8)

where arg min
g G

Q(g) denotes the vector g that mini-
mizes Q(g) on the set G. Note, that the empirical index 
Q

N
(g) (4) is obtained by the replacement of the integral 

in Q(g) with the fi nite mean sum of squares.

MATHEMATICAL BACKGROUND 

AND ASSUMPTIONS

Let T
1
, ,T

N
 are independent random variables with 

a common probability density function (t) whose support 
is T. Let G

i
 = G(T

i
) be the corresponding relaxation modu-

lus, i = 1, ,N, and let ( )i i i i iG G Z G T Z= + = +  denote 
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their measurements obtained in a certain stress relaxation 
test performed on the specimen of the material under 
investigation. Here Z

i
 are additive measurement noises.

We take the following assumptions, which seems 
to be quite natural in the context of relaxation modulus 
approximation task.

• Assumption 1. The relaxation modulus G(t) is 
bounded on T, i.e. sup

t T
G(t) M<

• Assumption 2. The set of admissible model param-
eters G is compact in the space 2 1nR +

+ .
• Assumption 3. The measurement noises Z

i
 are 

bounded, i.e. |Z
i
| <  for i = 1, ,N.

• Assumption 4. {Z
i
} is a time-independent sequence 

of independent identically distributed (i.i.d.) random 
variables with zero mean and a common fi nite vari-
ance 2: E[Z

i
] = 0 and E[Z

i
] = 2< .

Note that the assumption 1 is satisfi ed, in particular, 
if G(0)<  and the weak energy dissipation principle 
is satisfi ed – for details see, for example [25]. Obvi-
ously, from assumption 4 if follows that E[G(T

i
)+Z

i
–

G
M

(T
i
,g)] = Q(g)+ . Taking into account the Maxwell 

model equations (2), (3) set-up we see that the following 
properties hold.

• Property 1. G
M

(t,g) is continuous and differen-
tiable with respect to g for any t T.

• Property 2. sup
t T,g G

|| gG
M

(t,g)||
2
< for an arbi-

trary compact subset G of 2 1nR +
+ .

• Property 3. sup
t T,g G

G
M

(t,g)< for an arbitrary 
compact subset G of the space 2 1nR +

+ .
Notice that, since in view of Property 1 the quality 

indices Q(g) and Q
N
(g) are continuous with respect to 

g, then if the set G is compact in the space 2 1nR +
+ , the 

solutions of the optimal approximation tasks (5) and (8) 
there exist, on the basis of the well-known Weierstrass’s 
theorem which asserts the existence of continuous func-
tion extrema on compact sets.

ASYMPTOTIC PROPERTIES 

OF THE OPTIMAL MODEL 

Now we wish to investigate the stochastic-type as-
ymptotic properties of the Maxwell model approxima-
tion tasks (5) and (8). When studying these issues, the 
following proposition is instrumental. 

• Proposition 1. When the relaxation modulus mea-
surements are corrupted by additive noise and the 
Assumptions 1-4 are satisfi ed, then:

( ) ( )2

g

0 1Nsup Q Q w.p. as Nσ
∈

+ − → → ∞g g
G

, (9)

where w.p.1 means “with probability one”.

The proof follows immediately from Property 2 in 
[12]. To verify this claim we need only note that the 
above Properties 1 and 2 guarantee that the assumptions 
A2 and A3 in [12] are satisfi ed. Next, the Assumption 
2 is equivalent to A1, the Assumption 4 is equivalent to 
A5 ibidem, and due to Assumption 1 and Property 3 the 
assumption A4 ibidem holds. 

Proposition 1 enables us to relate the Maxwell model 
parameter g

N
 solving the optimal approximation task (5) 

for empirical index Q
N
(g) to the parameter g* minimizing 

the deterministic function Q
N
(g) in (8). Namely, from the 

uniform in g G convergence of the index Q
N
(g) in (9) 

we conclude immediately the following.
• Proposition 2. Assume that Assumptions 1-4 are 

in force, T
1
, ,T

N
 being independently, at random 

selected from T, each according to probability dis-
tributions with density (t). Then for the additive 
noise corrupted relaxation modulus measurements:

1N w.p. as N∗→ → ∞g g  (10)

and for all t T:

( ) ( ) 1M N MG t, G t, w.p. as N∗→ → ∞g g .

Thus, under the taken assumptions the Maxwell 
model parameter g

N
 is strongly consistent estimate of the 

parameter g*. Moreover, since the Maxwell model G
M

(t,g)
is Lipschitz on G uniformly in t T (the above is guaran-
teed by Property 2), then the almost sure convergence 
of g

N
 to the respective parameter g* in (10) implies that:

( ) ( ) 0 1M N M
t

sup G t, G t, w.p. as N∗

∈
− → → ∞g g

T

,

i.e., G
M

(t,g
N
) is in the case considered a strongly uni-

formly consistent estimate of the best model G
M

(t,g*).

CONCLUSIONS

Summarizing, when the Assumptions 1-4 are satis-
fi ed, the arbitrarily precise approximation of the optimal 
Maxwell model (with the parameter g*) can be obtained 
(almost everywhere) as the number of measurements N
grows large, despite the fact that the real description of 
the relaxation modulus is completely unknown. Thus, 
when the set {t

i
} is open to manipulation during the data 

collection, it is an important experiment design issue to 
take an appropriate sampling instants. We shall comment 
on how to do this in the forthcoming paper [26], where the 
complete identifi cation algorithm providing the strongly 
consistent estimate of the optimal model is given. The 
stochastic-type convergence analysis is also performed 
in [26] and the rate of convergence is discussed for the 
case when the measurements are perfect or corrupted 
by additive noises. 
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O NIEZALE NEJ OD PUNKTÓW POMIAROWYCH 

IDENTYFIKACJI MODELU MAXWELLA 

MATERIA ÓW LEPKOSPR YSTYCH

S t r e s z c z e n i e . Rezultat identyfi kacji, czyli wyznaczony 
model zale y zarówno od przyj tej klasy modeli oraz przyj -
tego wska nika jako ci modelu, jak i konkretnych danych po-
miarowych. W pracy rozwa a si  problem optymalnej w sensie 
najmniejszej sumy kwadratów aproksymacji modu u relaksacji 
materia ów liniowo lepkospr ystych uogólnionym modelem 
Maxwella na podstawie dyskretnych, zak óconych pomiarów 
modu u relaksacji zgromadzonych w te cie relaksacji napr -
e . Zak ada si , e opis rzeczywistego modu u relaksacji 

jest ca kowicie nieznany. Pokazano, e wprowadzaj c odpo-
wiednia randomizacj  punktów pomiarowych mo na uzyska
model Maxwella asymptotycznie niezale ny od punktów po-
miarowych. Wyznaczony model jest silnie zgodnym estymato-
rem modelu optymalnego w sensie ca kowego kwadratowego 
wska nika jako ci niezale nego od punktów pomiarowych. 
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Odpowiedni algorytm identyfi kacji b dzie przedmiotem ko-
lejnej pracy, w której przeprowadzona zostanie tak e analiza 
zbie no ci modelu. 

S o w a  k l u c z o w e : lepkospr ysto , modu  relaksacji, 
model Maxwella, identyfi kacja modelu.


