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Summary. We considered the formulation of the
problem of constructing a mathematical model of the
deformation of the railway sleeper track structure with
the step change of stiffness on the elastic Winkler
foundation. The rail is represented as a beam of variable
cross-section. To determine the displacements and
angles of rotation of cross sections, we used Laplace
transform method of equation and delta at the joint. As a
result of simulation, we obtained the forms for moving
semi-infinite beams (stacked rails) laying on the elastic
foundation, which can be used for arbitrary values of
stiffness "C" of the elastic foundation. We also proposed
a simplified alternate variant of solution using the
method of "small" parameter in case if the stiffness
characteristics of two adjacent rail sections slightly
differ.

Key words: rolling stock, rail, linear stiffness,
deflection and rotation angle of the cross-section at the
joint, stiffness of the rail foundation, Winkler
foundation.

INTRODUCTION

An effective and long-term use of the
equipment and the infrastructure, transport
systems especially the railway transport. It can
significantly reduce the maintenance costs of
material flows moving through these systems
[13, 14, 18, 19]. One of the methods to reduce

costs is to prolong the term of the rail work
due to their constant permutation in the
process of deterioration from more loaded onto
less loaded routes [12, 17]. But in any case,
such a movement involves the necessity of
joining the rails of various grades, which leads
to a drastic change in stiffness of the rail linear
filament at the joint. This causes the
significant vertical dynamic forces and,
accordingly, decreases the velocity of railway
vehicles. To avoid this phenomenon it is
necessary to define the parameters of the
deformation of the rail at the joint stiffness and
the range of the rail foundation.

RESULTS OF RESEARCH

The aim of the study is to determine the
interaction between the wheels of railway
vehicles and the rail with graded stiffness
laying on the Winkler foundation.

To simplify the construction of the
model we consider only one rail consisting of
different types of rails and respectively
different linear stiffness. The load from wheels
of the railway vehicles is transferred to the
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rails and through ties to ballast which can be
represented as Winkler foundation.

To describe the behaviour of the rail as
the beam of variable linear stiffness, laying on
the Winkler foundation, it is possible to use
the differential equation that has the form [I,
7,10, 16]:

d*U*(x)
dx*

El, + C21+(C22—C21)_‘*(x—xk)]-U2(x)=

n+l

=Y RS(x—x,). (1)
i=0

The solution of the equation (1) with the
classical approach is based on the dissection of
the beam at the point x, (the point of
connection of two parts of the beam of
different stiffness) and subsequent calculating
of two semi-infinite beams laying on an elastic
foundation of the constant stiffness (Fig. 1).

Consequent joining is at the same section
x =x, . When joining two sections of beams, in

the the

displacements and rotation angles of beams at
the joint, should be observed, that is, the
fulfilment of conditions:

section  x,, compatibility of

U, (%) =Up(x,),

du 2
Lo ().

dUsp
o )=

To obtain the equation of bending of the
beam (rail) laying on the elastic foundation
(ballast) we use the equation of the initial
parameters for each side.

To solve the equation for each side of the
beam we wuse the method of integral
transformation of Laplace’s equation [3, 5, 10,
16]:

4

U+4a4U=i-5(x—x,-), 3)
dx, E\L
4
U | saty =L S(x; - x), 4)
X4 242

where: o* :%5_12’ K, — stiffness of the

2
elastic foundation (N/m?), £ — the coefficient
of the elasticity (N/m?), El, — stiffness of

sides 1 and 2 of the rail beam (N/m?), 5(x, —x)
— the delta function, defined at the point x;.
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Fig. 1. Scheme of variable section beams on the elastic foundation:
a — calculation scheme of the beam with a step change of the linear stifthess C,;, C,, on the elastic foundation;

b — calculation schemes of beams with the constant linear stiffness on the elastic foundation C,;, C,,
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If the coordinate system passes through a
cross-section at the point x, from two semi-
infinite beams (two rail sections of different
stiffness), only one beam, which has less EI
stiffness, can be viewed. This simplification is
possible because ultimately it is necessary to
know the movement of this side of the rail
(beam) to choose the diagram of the rail track
structure, which will provide the necessary
stiffness of the bed and smooth bending of
both sides of the beam, eliminate the
appearance of additional dynamic loads from
the wheel to the rail. According to fig. 1 that is
the side of the beam with the stiffness C,,.

Therefore, it is sufficient to consider only the
equation (4).

After using the direct Laplace’s equation
[16]:

F(x)= Te_S'U ®)dt . ®))
0

We obtain:
S*F(s)-U(0)S> —U'(0)S* =U"(0)S? — 4a* F(s) =

P
2;56 ‘. (6)

After some equations:

s? S?
F(s)=U(0)———+U'(0)———+
S* +4a* S* +4q*
S? 1 P _
+U"(0) +U"(0 +3 L™ (7)
sS4 +4a* )S4+4a4 gEl

To obtain the equation of the bending of
the beam U(x), laying on the elastic Winkler
foundation it is necessary to make the inverse
Laplace transformation by the formula:

U(x)= lim L : aTZ”F(s)ds : ®)

a—w® 272'[ a—ib

Then obtain:
U(x)=U(0)cos cox - choox +

+ U’(O)ZL[shax - cos o + chax - sin ax | +
a
U"(O)L2 shax -sin ax + )
20

1 .
+ U”’F[chaxosmax + shox - cos ax]+
o

1 Pi[cha(xi —x)-sina(x, —x)—]

" 40°E1 7| - sha(x; — x)-cosa(x; — x)

To simplify the function (9) we make the
following change:

chax-cosax = B,(x),

L chox -sinax + shox -cosax )= B,(x),
2
a

10
5 (shoox-sin ax) =B, (x), (19
2a
1 3 (chan -sin oox — shax - cos ax) = B, (x).
4o
Then it can be written as:
U(x)=0(0)- B,(x)+ U'(0)- By (x)+ U"(0)- By(x)+
#U(0)- By(x) 5 S RB ). (an
at that:
B,(x, —x) if x, > x,
B,(x,—x)= (12)

0 if x, <x.

Using the coupling between the shear
forces and moments at the point of connection
of beams (rails) of different stiffness, as well
as derivatives of the displacement of the beam
it allows determining the above-mentioned
moments and forces:

M(x)= EI"ZLZ(") — M(0)=—-EI-U"(0),
de (13)
O(x)= —ElddLgx) — 0(0)=—E1-U"(0).

Using the equation (13) the expression
for bending of the beam (11) can be
transformed to the form:

U(x)=U(0)- B,(x)+U"(0)- B, (x)+

+%{—M(O).B3(x)_Q(0)-B4(x)+Zi:PI-B4(xl.—x)}_ (14)

Arbitrary constants

u(0), U'(0), m(0), 0(0), in the equation
(14) can be determined from the boundary
conditions.

As stated above, if we cut the beam of
the variable stiffness at the point of connection



MATHEMATICAL MODEL OF DEFORMATION OF RAILWAY SLEEPER TRACK STRUCTURE 155

of the semi-infinite stiffness C,, and C,,, i.e.,
at the cross section x=x, (Fig. 1), and laying

on the elastic foundation of the constant
stiffness, for calculating each of these beam it
is possible to use the equation (14). For that
the origin of coordinates should be placed at
the joint between the beams and put new
variables along the axes of beams x;and «x,,

which are connected with the initial (basic)
coordinate system by the following ratio:

(15)

X=X, =X Xy =X—Xp.

For the semi-infinite beam with the
lower stiffness C,, (Fig. 1), the equation (14)

takes the form:
Uzz(xz)=U(0)‘Bl(x2)+U(O)'Bz(x2)+

+EL[2{—M(0)-Bz(xz)—go).B4(x2)+;132234(x2 —xé)}. (16)

For the second semi-infinite beam (rail)
of the higher stiffness ¢, (Fig. 1), the

equation (14) takes the form:
Us(x2)=U(0)- B, (x,)+U'(0)- By, ) +

1 i

o] 0500} 8,0+ 1) 17
1 i

Arbitrary constants U(0), U'(0) for the

semi-infinite beam are determined from the
condition that is at large values of x, which
they are derived; movements should be zero

[15]. Where x » «, chax—)shax—)%e“".

Using the equation (10) after the
transformation we obtain the following:

Bi(x) —)% ¢™(cosax),

B,(x) —>L ™ (sinax +cosax),
4a

(18)

I

B3(x)—>ﬁe (sinex),

B,(x) —>L, ™ (sinax—cosax),
8ar

and ifx:(x—x’),

B, x—x’)—)g—l3 e“("’x')[sinoc(x —x’)—cosa(x—x’ )]
o

Using (18) the equation of the deflection
of the beam (14) we reduce to the form:

U(Hoo):%ew{{coswn{u(o)w(o)i i

EI

x[Q(_(Z) _Zﬁ (sinooci +cosa’ )]}Hinoocx

4’ T 4’

4o’ 207

Be_m Py i
x Y ———|cosox’ +sinax
i 4o

do)_mo)_

x{U’(O)i L

0. (19
2 EI >0 (9)

If the coefficients of the functions sinax
and cosax at (19) are zero, displacements
U(x — ) become zero.

To ensure this condition from the
equation (19) it is necessary to allocate and
make zero of two following equations:

{Q(O) —Z}Ze;?(sinax" +cosax’)} =0,
o

U'(0)+ U’(O)i + é X
) { 00) M)y re

4’ 2a° ~ 4o’

(cosaxi +sinax’ )} =0.
(20)

By solving the system of equations (20),
we obtain the expression for determining the
unknown initial parameters U(0) and U'(0) in

the general form:

1 | 00) MO0) P ;
U(O):EI-{%;)—A;(?LZ o coswc},

i

U(O)—l.{_Q(O)_M(O)_zE

CEl| 28 a

€2y

(cosaxi +sinox’ )}

Using the equation (21) and the data of
the scheme (Fig. 1) for the beam with a lower
linear stiffness C,, we obtain:
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Qo) _MO),

1 ' 20‘22 20‘222

(cosazzx; —sinazzx;)

20

For beams with a higher linear stiffness
C,, the equation will be of the form:

_d0) Mo,

i. 20‘231 2%1
El Pl i
HE = 2 cosa, X!

UZI(O) =

g0, vio)
L 20‘221 20,
EI le e

25

After making some changes, we obtain:

(23)

_l’];l(o)=

(coscxnxf —sina,,x| )

. 1 ; )
1 _ —0{2])(] 1
(o =3 e Cos &, X,
21
i 1 aﬂxl( . i)’
q,, = — COSO(ZIJC1 SN &, X,
21
(24)
i 1 )X i
Oy = 5 e COS 5, X,,
22

i 1 %zxg( i i)
g2 =—5€ “7|cosa,,x; —sina,,x; ).
2

We can simplify the expressions (22 and

23):

1 00) MO) 1
Uzz(O)_Elz |: 2az3z 20‘222 Zz:z Py (25)
Uéz(o):El]'|:2Q(§2)+1;4;O)+Z;EZZ'(”;2:|-

1 00) MO) 1
UZI(O)_Ell |: 2a23I 2a22I Z,:Z I ur (26)

—U;1(0)=1-[Q((Z)+A/I(O)+ZIBN '(pél}-

El |20 2a, 2

U,0)=— ,
22( ) E[2 +ZRZ efwszz Cosa%x"
| T 2, i 22)
o), M)
U (O)—L . 2a222 2a22
2357 EL P22 5%,

Here U, (0), U5 (0), U5 (0), U%(0) —
displacements and rotation angles as
derivatives of the from U, of both parts of the

beams (Fig. 1) at their joints.
Proceeding from the conditions of the
equality of displacements U(0) and rotation

angles U'(0), we can determine the initial
parameters 0(0) and M(0) in (22, 23) at the

joint of two semi-infinite beams.
From the conditions of compatibility in
the adopted coordinate systems:

{UZI(O) =Ux(0),

, , 27)
-Uy (0) =U,, (O)

After changing values U,,(0), U,,(0), and
also U4,(0), U5,(0) for expressions from (25,
26) and substituting in (27) we obtain:

Q(O)(%+ ! j—M(O)(L+ 12j=
aZl a22 aZl azz

n+l

s
:ZPI‘ZI -3, — ZPI‘ZZ -0

i=0 i=S+x

We made an additional replacement:

(L+ 13 J—G”,
0‘21 1225

1 1 1 1
&y Oy Oy  Op

G11 ‘Gzz _G122 =A, (29)

and solved the combined equations (28),
taking into account the substitutions (29)
relative to ©(0) and M(0) we get initial
parameters which are explicitly expressed by
concentrated forces P*' and P*
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1S Gyl - Gragtl) —
Q(O)_ A ZR G0 — G128
i=0
n+l ) )
- 'Zpizz (Gzzwéz -G8 )}
i=S+x 1 . (30)
M(O): X|: le(Glzgoél - Gllgél) -
i=0
n+l
- ZPzzz (Glzgﬁéz - Gng;z)}-
i=S+x

Substituting the initial parameters Q(0)
and M(0) from (30) to (25 and 26) and
performing some transformations we obtain:

1 G, G (G, G
Up0)=— D P| —p} | =2 +2 |1 g | T2 4 L |4
22() 2ELA {21 |: (ﬂzl(%; 0‘22] 5122(%; azijj| (€29)

G, G G, G
+Y P o 2+ A |+gl | 2+

27 {(pz{aé a; J qﬂ[azgz azzﬂ}
1 (G, 26,) (G, 2G
UEZ(O)I2EIA ZPI‘ZI €02{_2§+JJ—‘]21(_]§+JJ +
2 Ay Ay, Up Oy
2}322 _¢§{G_2§+2G12 _AJ_C]éz(G_lg"‘ZGII_AJ ]
Op Q) Uy Uy
1 G, G G, G
U (0= ISP i [ 2 G2 Al i | B2 B ||
2|() 2EIA {Zl |:¢’21(a23] a221 J ‘h](%gl az;J:|
—23?{¢;{Gf—G%J+q;[q§+cij},
Oy Oy Oy Oy
(32)

1 (G, 2G,) 2G
U§1(0)=2E1A ZFI’ZI —¢2{222—12]+q2(61§—“+A] +
| o) Oy Gy Oy

— {GzGJq {quj |
0!221 220 a221 05

we are making the

For simplicity,

replacement:
» 1| (G, G G, G
U =@’ | 2-—"2_Al|l-¢g' | 224+-L ,
21 50 |:(P 21[0[231 05221 J q 21(0[231 0[231 jj|

1 G, G G, G
Ul = |- | 212 _g' i+_11 .
212 2A|: » 21( o’ azzlj q 22[0(231 o’ H

; 1 G, G G, G
U,  =—|-0¢! £+712 +qg! 712+J A
2275 A{ (021(%; azi] ‘hl(az; az;j:|

1 G, G G, G
U;z,z ={—€02z[2§—1§— ]4'6] 22(1§+1;J:|
2A @y Ay Ay Ay

(35)
Also in the formulas (30):
i1 i i ;1 i i
QZFK(Gzz(Dzl_Glz(pzl); 22=Z(_G22¢’ =G zz)s
(36)

M;lzi(c;ugz);l_(;ll¢i21); Mizzzi(_GlzCZ’;z_Glﬂ’;z)

(37)
Substituting in (30) we obtained
simplified expressions from (36, 37)

designations for initial parameters U(0), U'(0),

0(0), M(0):

S n+l
0(0)=>"P"0 + > BP0,
=0 i=S+1
(38)
S n+l
M(O) = Z])ileél + ZBZZMéz-
i=0 i=S+1

Similarly, transforming (25 and 26),
using (33-37) we obtain:

S n+l
Uzl(o):L Z i21U£11+ ZBzzUélz >
EI[ i=0 , i=S+1 ’ 39
1 S . n+l ) ( )
22( ) ZPI‘MU;N + zplzzUézz
ElL |5 o
1 S ) n+l
Uél(o)__ ZPile;lll + ZPzzzUéllz >
EI] i=0 ' i=S+1 (40)
' 1 3 21y yri & 227 71i
Uzz(o)zﬁ ZPI U22,1+ ZPI Uzz,z .
2 Li=0 i=S+1
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Results of the transformation the
equations (38-40) allow to represent all the
initial parameters of two semi-infinite rigidly
coupled of different stiffness beams laying on
the elastic foundation via concentrated forces
P*', P?, acting from the railway vehicles.

From the condition of the compatibility
of displacements (27) the expression
U,,(0)=Ux(0), -U5 =Us, is hold and used in
further calculations.

Using the desired expression (16, 17) for
the displacement of two semi-infinite beams
which are rigidly connected and have different
stiffness in the unfolded state, with regard to
(38-40), we obtain:

1 S i 7
Uzl(xl):_EI {zpz'Zl[(Uzl,l 'Bl(xl)_Uzl,l 'Bz(xl)_
1

i=0
- M} -B3(x] )+ 03, -B4(x] ))]_‘7

(xl - 0)_ B, (xl - xli )_‘_(xl - xi)+
n+l

! %11322[((]212 - B, (x]) Uéi],]'BZ(xl)_
i=S+

- M5By )+ 0% Bl | (- 0) (4D

1 ) i 1
Uzz(xz):_EI {ZE)P;ZI[(Uzzl 'Bl(xz)_U221 'Bz(xz)—
2 U

—le B3 X JrQzl B4(x2 ] ‘ Xy —
n+l

¢ 3085 ) - U8 B ))—

_Mzz 33 X +Q22 B4 x2 ] ‘

st [l -st)

When passing from the local to the
global coordinate system in Heaviside record
step function making changes using the

(42)

expression X =X — X Xy =X — X and
regulations:
Lat 6<6,,
_‘ (xk - x) = ~ o~
0,at 0= 0,;
4
Lat 60, “43)
‘ (x’ - x) =
0,at 6=0'

Making the transfer of the equation (41,
42) to the global coordinate system x we are
taking to the account the expressions in [2]:

UZl(xl)zEL[l{ggﬂ[(UéLl'Bl(xk —x)—Ule 'Bz(xk _x)_
—Mg1’33(xk _x)+Q§i1 'B4 X _x )H_ Xe —x -
—B4(xi —xuf(xi - n+1 [(U’zl2 B, (x x)

~Upy 'Bz(xi —x)—Mgz-B3(x" _x)+g2i2'B4(xi _x))ui

(¥ =, (44)
U= A5 70 e Bl
Uy Bl )My B ) + 04y Byl )] |-
b S0t B - Bl )
My Bx—x )+ G- Byl )] |-(x—x,)-

(45)

o) s .

When transferring the force P along the
rail (beam) of the variable stiffness laying on
an elastic foundation (i.e., rolling the wheels of
the rolling stock), from semi-infinite beam
section with higher stiffness to the section with
less stiffness, after the load jump the
perturbation is damped with the increasing
distance from the considered cross section at
the point x, to the infinity.

According to these equations (43) and
(44) of the function B,(x).......B,(x), taking into

account that the fading should be of the
following form:

B(x) —>%e"“ (cosax),

B,(x) —>L e ™ (sinox —cosax),
4o

|
B3(x)—>47“2e (smooc),

B,(x) —>L3 e ™(sinox +cosax) or
8

—a(x—x;

3 [sma(x X, )+coson— xk]

B, (x —X; ) —>L e
8a
(46)

Using Krylov’s functions we obtain the
equation of the deformation parameters of the
beam with the damped oscillations, taking into
account [9]:
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U(x)=U(0)chax-cos aox +

+ U’(O)L[chax-sinooc+sh00c-cosooc]+
2a

+ U"(O)Lshzxx-sinwﬁ

2a°
+ U"’(O)%[chax~sinax—shax~cosax]+
a
+EL]’24%‘l3[cha(x—xl-)-sin alx—x,)-
—sha(x—xi)-cos a(x—x,.)]. (47)
And  taking into  account that

chax:%(eax +efw‘); shax:%(eax —efw“) it can be

presented to the form with the lower stiffness
for the semi-infinite beam:

Ulx)= %ew‘ {U(O)cosax + U’(0)2L (sinox + cosax) +
o

+ U”(O)L2 sinoo + U”'(O)L3 (sinox — cosax) +

20 4o
Pl [ . .
+——1e (SIH(Z)C'COS(Z)C»—COSODC'SIH(ZX»)—
EI 4 3 i i
P 124

—e ™ (cosax - sinax; +sinax - cosa, )]}+

1 ™ {U(0)cosax +U'(0)i (sin o — cosax) +
2 2a

+ U”(O)Z% sinoox + U”'(O)L (sin oo+ cosax) +
a

With large values of x, while damping of
amplitudes of displacements, expressions in
braces (with multiplier ¢*) can be ignored
because they are under common factors sinox
and cosax . This condition is taken into account
while obtaining the expression for U(0) and

U'(0).
The expression containing the factor ¢*,
defines functions B(x)...B,(x) and B,(x-x,)

factors with the initial parameters U(0)..U"(0)

and L

Il,2

Thus equations (44, 45) allow to define
displacements of the beam of the variable
stiffness, laying on the elastic foundation,
which varies accordingly to the stepped law
(Fig. 2). Also the data of the equation for a
semi-infinite beams ensure that the conditions
of compatibility of displacements (linear and
angular) at the point of junction, where the
abrupt change of their stiffness happens;
equations (47, 48) obtained  after
transformation of the explicitly contain only
external concentrated forces P, that act from

1

the side of railway vehicles.
The above expressions used for the

4a’ displacing of the semi-infinite beam laying on
B 1] e . the elastic foundation are valid for arbitrary
+———le (sinox - cosa; — cosanx -sinax; )+ . 3
El 4a values of stiffness C and the elastic
+e ™ (cosax - cosax; + cosax - cosa, )] } (48)  foundation.
yr P p? P%. P
Co1 C22
e —

Xk

—

U

Fig. 2. Scheme of the loading and the displacement of the beam of variable stiffness C,; and C,, on the elastic

foundation
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In case, if the magnitude of the beam
(rail) Ac is relatively small, it is convenient to
use the method of the small parameter [6 ,8,
11, 21], which allows to reduce the number of
computations in determining the displacements
of the beam on the elastic foundation. The
differential equation describing the stress-
strain state of the beam with the lower stiffness
while it’s spasmodic change, laying on the
elastic foundation is:

4r 2

£, L0 e e | (e ) =S hote—), (49

Cy —¢C
where: & =212

Cx
Series expansion U?*(x) by the small

parameter ¢ [6]
U (x)=UZ(x)+ eUE(x)+ U2 (x ).y (50)

By substituting the solution (50) into the
equation (49) we obtain:

d*u?
4

EL Y02 (0) = U2 (x) + 602 (x) + €202 (x) 4. +

valive [ (x| =030+ U2+

+02(x)+...]= Y Polx—x,). (51)

By grouping the terms of the equation
(51) by the degree ¢/, ; we obtain:

40
SO{EIZ ddlj" cng(x)+§135(x—xk )}r
X i=0
|y 40 2 -
+& {Elz 7 +oU; (x)+cz<J (x—xk)}+
o . 40 2
+& {EIZ dx42 czUz(x)+czﬂlf(x—xk)Ul (x)}+.......=0, (52)

The expression with ¢/ of different
forces becomes zero. As a result, we obtain a
system of differential equations:

d*U?

4

1
+4a’'Ug (x) = “EL PS(x—x,)=0,

+4a’U;} (x) =—4a* _"(x - X, )U(f (x),

X
d'U;

4

dx
d'U;

4
X

+4a'U? (x) = —4a* _"(x - X, )U12 (x),

(33)

where: «* for the beam side with the
lower stifthess:

4 _1 o
“TE (54)

The system of differential equations (53)
is solving sequentially, beginning with the first
equation of the system. The solution of the
previous equation is included into the right
side of the following equation, etc. [20].

Using expressions (44, 45) or (50) it is
possible to sum the interaction of railway
vehicles with the track structure, completed
with rails of different brands (i.e. different
linear stiffness), laying on the elastic
foundation [4, 22].

Besides the classical approach of
identifying the technical parameters of the
deformation of the track panels laying on the
elastic foundation with low values of the
abrupt change of the stiffness of the rail the
small parameter method can be used.

The purpose of this calculation (such an
approach) is confirmed (checking) by the
approach to the task solution of Winkler model
as quiet simple and in many cases provides a
good convergence with the practice.

It should be noted that the accuracy of
determining the parameters of the permanent
way, the method of calculations that was given
above, essentially depends on the type of ties,
which are the intermediate supports between
the rail and under-rail space (ballast layer).

According to this while calculating it is
necessary to make the definite assumption. For
example, assuming that the load on the rail
from the wheel of the rolling stock to the load
of the transmitted to the resilient space, it
means that the displacement of the boundary
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of the half-space can be determined by the
formula:

1-v P_j
272G, r

U, (x,,x,,0)= , (55)

where: v — Poisson's ratio, G, — the
modulus of stiffness of the half space, p/ —
the load on the elastic half space from the

track.

(56)

2 2 2
ro=x +x;,

where: r(x;,x,) — the distance between
the point of the application of the force p’/ and

the point of determining the displacement.

To improve the accuracy of the task
solution, we take into account the interaction
of the track support with the under-rail elastic
half-space boundary. In this case it is
necessary to move to a distributed load
2(&,%,). The displacement of the border the
border of the elastic half-space can be defined
by the following dependency:

gi(&.& )dé, dE,
271G, zj J n > 7

U3(x],x2,0): .

where: &,¢& — coordinates of different
points on the side with the distributed

load g{(&.4,), ¥ =(x, &) +(x, &), at that 5,
— (variable), the distance between different
points (&,&,) of the loaded side to the point,
which  displacement is determined by
(xla X2, X3 :0)-

Formulas from the given above
techniques allow to describe (but in practice)
simple types of rail connections with three-
dimensional space under-rail system. Despite
bearing the rail on the elastic foundation and
various analytical forms of description, the
general scheme of calculation remains
unchanged and allows determining the
displacement of the rail track from work of
concentrated forces p{ from the wheels of the

vehicle. That is the part of an overall dual
problem and requires taking into account the
vertical displacement of the wheels of the
railway vehicle and then maybe the solution of

the dual task: railway vehicles, the track and
the ballast.

CONCLUSIONS

1. We developed the generalized model
of the adjoin formulation for the track and the
elastic foundation with the load from the
wheels of the railway vehicles, which allows
to determine the stress-strain state in the
component parts of a complex system.

2. The generalized model can be used in
various designs of railway vehicles and
different types of elastic foundation (simulated
by Winkler foundation). We found the system
of algebraic equations composed for the
unknown forces of the wheel-rail interaction.

3. The result of the solution of the system
of the linear equations interaction forces of the
wheel-rail allow to make calculations of
stresses, strains and displacements of all
system components.

4. We developed a simplified model that
allows (while operating on the rail system
canvas of concentrated forces, on the rails) to
determine the stress, the strain and the
displacement of the rail (simulated infinite
beam) on Winkler foundation with varying
stiffness. It has two solutions. The first is
based on the "conjugation" of two semi-
infinite beams (rails) with a step change of
stiffness on the elastic foundation. Such a
solution of the task is "exact" and taking into
account different stiffness values of connected
rails. The basis of the second solution is the
method of the "small" parameter. The given
approach is effective when the stiffness
characteristics of two adjacent sections slightly
differ from one another.

5. To estimate the allowable using of
generalized Winkler foundation we obtained
analytical expressions of the displacements for
the same options which were obtained for the
elastic half-space.

6. The proposed generalized model of
Winkler foundation allows effective solving of
many important practical problems, including
the problem of the deformation of the rail with
the elastic half-space and choose its stiffness
characteristics to reduce the vertical dynamic
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component of force generated while transition
of the rail wheel with one stiffness on the rail
with the other stiffhess.

10.

11.
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MATEMATHUYECKA S MOJEJIb JE@OPMAIINI
PEJIbCOIIIIAJIBHOM PEIIETKU CO
CTYIIEHYATBIM U3MEHEHHMEM XXECTKOCTU
HA YIIPYT'OM BUHKJIEPOBOM OCHOBAHN
ITOCTOSIHHOM XXECTKOCTHU

Maxcum Croboosmuiok, Anna Huxumuna,
TI'puzcopuii Heuaes, Hamanva Paxoeckas

AHHOoTanus. PaccmMoTpeHa ©OCTaHOBKa 3aJayu
MOCTPOEHHUs MareMaTHYeckoil Mojenu aedopmanuu
peNIbCoIanbHOR pemeTKH co CTYTEHYATHIM
W3MEHEHHEM JKECTKOCTH Ha YIPYroM BHHKJIEPOBOM
OCHOBaHMU. PenbcoBas HUTh TPEJCTaBI€HA B BHJIE
0alkl TEepeMEHHOro cedyeHus. [l ompenesieHus
MepeMelIeHuit U YIJIOB MOBOPOTAa CEYEHWd B MecTe

CTHIKOBKHM  HCIIOJIb30BaH  METOJ  IPeoOpa3oBaHUS
ypaBHenus Jlamnaca u ¢pynkuus upaka. B pesynsrare
MO/JIETUPOBAHUS HOJTy4eHbI BBIPAKCHUS JuIst
nepeMenIeH s N0JTyOeCKOHEYHBIX Oanok
(COCTBIKOBaHHBIX PENbCOB), JISKAIIUX HA YIPYrom
OCHOBaHMHU, KOTOPbIE MOTYT OBITh HCHOJB30BAHBI JUIS
MIPOM3BOJIFHBIX 3HA4YeHWH KecTKocTH «C» ympyroro
ocHoBaHus. lIpennoxen Tak ke yNpOUICHHBI BapHaHT
pelleHus 3afad ¢ UCIOIb30BaHUEM MeToAa «Maioro»
mapaMerpa i1 ciydas, KOTZa  JKECTKOCTHBIC
XapaKTEPUCTHKN JBYX CMEXHBIX YYacTKOB peibca
OTIMYAIOTCS HE3HAYNTEIIBHO.

KnrodeBble cioBa: MOJABIKHOI cOCTaB, pelbC,
JMHEIHas JKeCTKOCTh, MHporué ¥ Yros IoBOpoOTa
CCUEHMSI B MECTE CTBIKA, JKECTKOCTh IOAPEIHCOBOTO
OCHOBaHMs, BUHKJIEPOBO OCHOBAaHHUE.



