PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Experimental research into the potential therapeutic effect of GYY4137 on Ovariectomy-induced osteoporosis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Evidence has shown that endogenous H2S plays an important role in the physiological and pathophysiological processes of many organs. The study aimed to explore whether exogenous H2S has a potential therapeutic effect on a rat ovariectomy-induced model of osteoporosis. Methods: The OVX osteoporosis model was established in female Sprague-Dawley rats by full bilateral ovariectomy. The rats were randomly divided into four groups, with the two experimental groups receiving an intraperitoneal injection of GYY4137 or sodium alendronate. The level of H2S in the plasma was determined and common laboratory indicators to diagnose osteoporosis, such as alkaline phosphatase (ALP) activity and the levels of osteocalcin (OCN), calcitonin, parathyroid hormone and leptin were measured. The bone mineral density (BMD) of the 4th and 5th lumbar vertebrae was measured using dual-energy X-ray absorptiometry. The maximum stress of femoral fracture was obtained through a three-point bending test of the femur. Results: The OVX osteoporosis model was successfully established. GYY4137 was injected to increase the level of H2S in the plasma in one group, designated OVX-GYY during the observation period (p < 0.05). At 12 weeks, the BMD value of the fourth lumbar vertebra in the OVX-GYY group had increased (p < 0.05). The BMD femur value in the OVX-vehicle group had decreased (p < 0.05). Bilateral ovariectomy leads to biochemical disorders related to bone metabolism and hormone levels in rat plasma (all p < 0.05). Ovariectomy also reduced blood calcium, blood phosphate and calcitonin, and increased parathyroid hormone and leptin. The opposite results were obtained for the groups with alendronate sodium or GYY4137 treatment (all p < 0.05). Conclusions: Through the slow release of H2S, GYY4137 did an excellent job of simulating endogenous neuroendocrine gaseous signaling molecules. Exogenous H2S had a regulatory effect on osteoporosis in ovariectomized rats, showing potential value for the treatment of human postmenopausal osteoporosis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-13,fig.,ref.

Twórcy

autor
  • Department of Orthopedics, Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Dongmen North Road 1017, Luohu District, Shenzhen 518020, China
autor
  • Department of Orthopedics, Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Dongmen North Road 1017, Luohu District, Shenzhen 518020, China
autor
  • Department of Orthopedics, Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Dongmen North Road 1017, Luohu District, Shenzhen 518020, China
autor
  • Department of Orthopedics, Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Dongmen North Road 1017, Luohu District, Shenzhen 518020, China
autor
  • Department of Orthopedics, Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Dongmen North Road 1017, Luohu District, Shenzhen 518020, China
autor
  • Department of Orthopedics, Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Dongmen North Road 1017, Luohu District, Shenzhen 518020, China

Bibliografia

  • 1. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7.
  • 2. Riggs BL, Melton LJ 3rd. Involutional osteoporosis. N Engl J Med. 1986;314:1676–86.
  • 3. Thorbjarnardottir T, Olafsdottir EJ, Valdimarsdottir UA, Olafsson O, Tryggvadottir L. Oral contraceptives, hormone replacement therapy and breast cancer risk: a cohort study of 16 928 women 48 years and older. Acta Oncol. 2014;53:752–8.
  • 4. Hollick RJ, Reid DM. Role of bisphosphonates in the management of postmenopausal osteoporosis: an update on recent safety anxieties. Menopause Int. 2011;17:66–72.
  • 5. Wang Y, Nishida S, Boudignon BM, et al. IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res. 2007;22:1329–37.
  • 6. Bikle DD, Sakata T, Leary C, et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res. 2002;17:1570–8.
  • 7. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066–71.
  • 8. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16: 1792–8.
  • 9. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.
  • 10. Whiteman M, Armstrong JS, Chu SH, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem. 2004;90:765–8.
  • 11. Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12:1–13.
  • 12. Hine C, Harputlugil E, Zhang Y, et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 2015;160:132–44.
  • 13. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300.
  • 14. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest. 2006;116:1186–94.
  • 15. Muthusami S, Ramachandran I, Muthusamy B, et al. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta. 2005;360:81–6.
  • 16. Almeida M, Han L, Martin-Millan M, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282:27285–97.
  • 17. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun. 2001;288:275–9.
  • 18. Maggio D, Barabani M, Pierandrei M, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003;88:1523–7.
  • 19. Xu ZS, Wang XY, Xiao DM, et al. Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med. 2011;50:1314–23.
  • 20. Li L, Whiteman M, Guan YY, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008;117:2351–60.
  • 21. Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med. 2009;47:103–13.
  • 22. Liu Z, Han Y, Li L, et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(−/−) mice. Br J Pharmacol. 2013;169:1795–809.
  • 23. Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol. 2006;40:119–30.
  • 24. Mani S, Li H, Untereiner A, et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation. 2013;127:2523–34.
  • 25. Kimura H, Nagai Y, Umemura K, Kimura Y. Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal. 2005;7:795–803.
  • 26. Komm BS, Terpening CM, Benz DJ, et al. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science. 1988;241:81–4.
  • 27. Eriksen EF, Colvard DS, Berg NJ, et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science. 1988;241:84–6.
  • 28. Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci U S A. 1991;88:6613–7.
  • 29. Mano H, Yuasa T, Kameda T, et al. Mammalian mature osteoclasts as estrogen target cells. Biochem Biophys Res Commun. 1996;223:637–42.
  • 30. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:1276–87.
  • 31. Massey HM, Flanagan AM. Human osteoclasts derive from CD14-positive monocytes. Br J Haematol. 1999;106:167–70.
  • 32. Adachi JD, Papaioannou A. Corticosteroid-induced osteoporosis: detection and management. Drug Saf. 2001;24:607–24.
  • 33. Thomas T, Martin A. Bone metabolism and energy balance: role for leptin. Joint Bone Spine. 2005;72:471–3.
  • 34. Lumachi F, Ermani M, Camozzi V, Tombolan V, Luisetto G. Changes of bone formation markers osteocalcin and bone-specific alkaline phosphatase in postmenopausal women with osteoporosis. Ann N Y Acad Sci. 2009;1173(Suppl 1):E60–3.
  • 35. Gogakos AI, Cheung MS, Bassett JD, Williams GR. Bone signaling pathways and treatment of osteoporosis. Exp Rev Endocrinol Metabol. 2014;4:639–50.
  • 36. Liu Y, Yang R, Liu X, et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of ca(2+) channel sulfhydration. Cell Stem Cell. 2014;15:66–78.
  • 37. Zhang C, Cho K, Huang Y, et al. Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci U S A. 2008;105:6936–41.
  • 38. Lv M, Liu Y, Xiao TH, et al. GYY4137 stimulates osteoblastic cell proliferation and differentiation via an ERK1/2- dependent anti-oxidant mechanism. Am J Transl Res. 2017;9:1183–92.
  • 39. Guo L, Tang K, Quan Z, Zhao Z, Jiang D. Association between seven common OPG genetic polymorphisms and osteoporosis risk: a meta-analysis. DNA Cell Biol. 2014;33:29–39.
  • 40. Yasuda H. RANKL, a necessary chance for clinical application to osteoporosis and cancer-related bone diseases. World J Orthop. 2013;4:207–17.
  • 41. Stuss M, Rieske P, Ceglowska A, et al. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2013;98:E1007–11.
  • 42. Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F. Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res. 2014;87:99–112.
  • 43. Grassi F, Tyagi AM, Calvert JW, et al. Hydrogen sulfide is a novel regulator of bone formation implicated in the bone loss induced by estrogen deficiency. J Bone Miner Res. 2016;31:949–63.
  • 44. Mcanalley BH, Lowry WT, Oliver RD, Garriott JC. Determination of inorganic sulfide and cyanide in blood using specific ion electrodes: application to the investigation of hydrogen sulfide and cyanide poisoning. J Anal Toxicol. 1979;3:111–4.
  • 45. Li L, Bhatia M, Zhu YZ, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 2005;19:1196–8.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-45629d9f-bced-4247-8326-dfa52eade38b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.