PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 01 |

Tytuł artykułu

Diurnal changes in leaflet gas exchange, water status and antioxidant responses in Carapa guianensis plants under water-deficit conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Young Carapa guianensis plants were examined under well-watered (control) and water-deficit conditions with the aim to evaluate possible relationship between diurnal changes in leaflet gas exchange with lipid peroxidation and adjustments in antioxidative responses. Treatment comparisons were assessed when leaflet water potential (Ww) in water-stressed plants reached around -2.5 ± 0.5 MPa at pre-dawn. Regardless of watering regime, the highest net CO2 assimilation rate and stomatal conductance were recorded until 9:00 h. Control plants showed diurnal increases in transpiration, while it was strongly decreased in water-stressed plants. Diurnal decreases in intercellular to ambient CO2 concentration ratio were just observed in stressed plants. Regardless of watering regime, non-significant changes (P[0.05) in Ww and relative water content were registered throughout the day; however, both variables were significantly lower (P\0.05) in stressed plants. Malondialdehyde concentration did not vary throughout the day, but it was higher in stressed plants. Excepting for guaiacol-type peroxidase, the antioxidant enzyme activities varied throughout the day regardless of watering regimes. Nevertheless, increases in antioxidant enzymes were more expressive in water-stressed plants. Despite, a relationship between diurnal changes in A and gs and lipid peroxidation or antioxidant enzymes was unclear regardless of watering regimes. Thus, we conclude that although plants from both watering regimes were able to adjust antioxidant enzymes activities throughout the day, the water-stressed plants were more susceptible to damages to net CO2 assimilation and suffered more expressive oxidative damages to lipids than plants grown under well-watered conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

01

Opis fizyczny

p.13-21,fig.,ref.

Twórcy

  • Centro de Tecnologia Agropecua´ria, Instituto So´cioambiental e dos Recursos Hı´dricos, Universidade Federal Rural da Amazoˆnia, Bele´m, PA 66077-530, Brazil
  • Centro de Tecnologia Agropecua´ria, Instituto So´cioambiental e dos Recursos Hı´dricos, Universidade Federal Rural da Amazoˆnia, Bele´m, PA 66077-530, Brazil
  • Centro de Tecnologia Agropecua´ria, Instituto So´cioambiental e dos Recursos Hı´dricos, Universidade Federal Rural da Amazoˆnia, Bele´m, PA 66077-530, Brazil
  • Centro de Tecnologia Agropecua´ria, Instituto So´cioambiental e dos Recursos Hı´dricos, Universidade Federal Rural da Amazoˆnia, Bele´m, PA 66077-530, Brazil
  • Centro de Tecnologia Agropecua´ria, Instituto So´cioambiental e dos Recursos Hı´dricos, Universidade Federal Rural da Amazoˆnia, Bele´m, PA 66077-530, Brazil
  • Centro de Tecnologia Agropecua´ria, Instituto So´cioambiental e dos Recursos Hı´dricos, Universidade Federal Rural da Amazoˆnia, Bele´m, PA 66077-530, Brazil
  • Centro de Tecnologia Agropecua´ria, Instituto So´cioambiental e dos Recursos Hı´dricos, Universidade Federal Rural da Amazoˆnia, Bele´m, PA 66077-530, Brazil

Bibliografia

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Brasil EC, Cravo MS (2007) Interpretac¸a˜o dos Resultados de Ana´lises de Solo. In: Cravo MS, Vie´gas IJM, Brasil EC (eds) Recomendac ¸o˜es de Adubac¸a˜o e Calagem para o Estado do Para´. Embrapa Amazoˆnia Oriental, Bele´m, pp 43–47
  • Cakmak I, Horst J (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine Max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x
  • Carvalho CJR (2005) Responses of Schizolobium amazonicum [S. parahyba var. Amazonicum] and Schizolobium parahyba [Schizolobium parahybum] plants to water stress. Rev A ´ rvore 29:907–914. doi:10.1590/S0100-67622005000600009
  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505. doi:10.1016/j.tplants.2008.06.007
  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Env 35:1–20. doi:10.1111/j.1365-3040.2010.02232.x
  • Cordeiro YEM, Pinheiro HA, Santos Filho BG, Correˆa SS, Silva JRR, Dias-Filho MB (2009) Physiological and morphological responses of young mahogany (Swietenia macrophylla King) plants to drought. For Ecol Manage 258:1449–1455. doi:10.1016/j.foreco.2009.06.054
  • Costa GF, Marenco RA (2007) Photosynthesis, stomatal conductance and leaf water potential in young trees of andiroba (Carapa guianensis). Acta Amazon 28:101–126
  • Costa H, Gallego SM, Tomaro ML (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci 162:939–945. doi:10.1016/S0168-9452(02)00051-1
  • Costa MA, Pinheiro HA, Shimizu ESC, Fonseca FT, Santos Filho BGS, Moraes FKC, Figueiredo DM (2010) Lipid peroxidation, chloroplastic pigments and antioxidant strategies in Carapa guianensis (Aubl.) subjected to water-deficit and short-term rewetting. Trees 24:275–283. doi:10.1007/s00468-009-0397-x
  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333. doi:10.1111/j.1439-037X.2008.00323.x
  • Garcı´a-Plazaola JI, Artetxe U, Becerril JM (1999) Diurnal changes in antioxidant and carotenoid composition in the Mediterranean schlerophyll tree Quercus ilex (L.) during winter. Plant Sci 143:125–133. doi:10.1016/S0168-9452(99)00034-5
  • Giannopolitis CN, RIES SK (1977) Superoxide dismutases I: occurrence in higher plants. Plant Physiol 59:309–314. doi: 10.1104/pp.59.2.309
  • Gonc¸alves JFC, Silva CEM, Guimara˜es DG (2009) Photosynthesis and water potential of andiroba seedlings submitted to water stress and rewetting. Pesq Agropeqc Bras 44:8–14
  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307. doi:10.1007/BF02374789
  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. doi:10.1104/pp.84.2.461
  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ine`s J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436. doi: 10.1007/s11738-009-0275-6
  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego
  • Lawlor DH (1995) The effects of water deficit on photosynthesis. In: Smirnoff N (ed) Environment and plant metabolism—flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 129–156
  • Lawlor DH, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025.2001.00814.x
  • Marchi S, Tognetti R, Minnocci A, Borghi M, Sebastiani L (2008) Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllus Mediterranean shrub (Olea europea). Trees 22:559–571. doi:10.1007/s00468-008-0216-9
  • Marenco RA, Gonc¸alves JFC, Vieira G (2001) Leaf gas exchange and carbohydrates in tropical trees differing in successional status in two light environments in central Amazonia. Tree Physiol 21:1311–1318. doi:10.1093/treephys/21.18.1311
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi:10.1016/j.tplants.2004.08.009
  • Møller IM, Sweetlove LJ (2010) ROS signalling—specificity is required. Trends Plant Sci 15:370–374. doi:10.1016/j.tplants. 2010.04.008
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Peltzer D, Polle A (2001) Diurnal fluctuations of antioxidative systems in leaves of field-grown beech trees (Fagus sylvatica): responses to light and temperature. Physiol Plant 111:158–164. doi:10.1034/j.1399-3054.2001.1110205.x
  • Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clone of coffea canephora subjected to long-term drought. Plant Sci 167:1307–1314. doi:10.1016/j.plantsci.2004.06.027
  • Pinheiro HA, Silva JV, Endres L, Ferreira VM, Caˆmara CA, Cabral FF, Oliveira JF, Carvalho LWT, Santos JM, Santos Filho BG (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind Crops Prod 27:385–392. doi:10.1016/j.indcrop.2007.10.003
  • Polle A (2001) Dissecting the superoxide dismutase-ascorbateglutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462. doi:10.1104/pp.126.1.445
  • Raza SH,AtharHR,AshrafM,HameedA(2007)Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60:368–376. doi:10.1016/j.envexpbot.2006.12.009
  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372. doi:10.1104/pp.106.077925
  • Slavick B (1979) Methods of studying plant water relations. Springer, New York
  • Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff N (ed) Environment and plant metabolism-flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 217–243
  • Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733. doi:10.1007/s00425-006-0380-3

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4514a0bd-07b9-4cb3-a569-02b46594b62b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.