PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 63 | 2 |

Tytuł artykułu

Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes - a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study of secondary metabolism in plants is an important source for the discovery of bioactive compounds with a wide range of applications. Today these bioactive compounds derived from plants are important drugs such as antibiotics, and agrochemicals substitutes, they also have been economically important as flavors and fragrances, dyes and pigments, and food preservatives. Many of the drugs sold today are synthetic modifi cations of naturally obtained substances. There is no rigid scheme for classifying secondary metabolites, but they can be divided into different groups based on their chemical components, function and biosynthesis: terpenoids and steroids, fatty acid-derived substances and polyketides, alkaloids, phenolic compounds, non-ribosomal polypeptides and enzyme cofactors. The increasing commercial importance of these chemical compounds has resulted in a great interest in secondary metabolism, particularly the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology and metabolomics. In today’s world the use of bioactive compounds derived from plants plays an important role in pharmaceutical applications. This review presents information about these metabolites and their applications as well as their importance in agronomy and bioactive effects on human health as nutraceuticals. This review includes also the new tendencies to produce these bioactive compounds under different stresses conditions such as biotic and abiotic stress that could be included in production systems.

Wydawca

-

Rocznik

Tom

63

Numer

2

Opis fizyczny

p.67-78,ref.

Twórcy

  • Division de Estudios de Posgrado, C.A.Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U.Cerro de las Campanas S/N, Colonia Las Campanas, C.P.76010, Santiago de Queretaro, Queretaro, Mexico
  • Division de Estudios de Posgrado, C.A.Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U.Cerro de las Campanas S/N, Colonia Las Campanas, C.P.76010, Santiago de Queretaro, Queretaro, Mexico
  • Division de Estudios de Posgrado, C.A.Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U.Cerro de las Campanas S/N, Colonia Las Campanas, C.P.76010, Santiago de Queretaro, Queretaro, Mexico
  • Division de Estudios de Posgrado, C.A.Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U.Cerro de las Campanas S/N, Colonia Las Campanas, C.P.76010, Santiago de Queretaro, Queretaro, Mexico
  • Facultad de Medicina, Universidad Autonoma de Queretaro, Clavel 200, Fraccionamiento Prados de la Capilla, C.P.76176, Santiago de Queretaro, Queretaro, Mexico

Bibliografia

  • 1. Aires A., Mota V.R., Saavedra M.J., Rosa E., Bennett R., The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J. Appl. Microb., 2009, 106, 2086-2095.
  • 2. Angelova S., Buchheim M., Frowitter D., Schierhorn A., Roos W., Overproduction of alkaloid phytoalexins in California poppy cells is associated with the co-expression of biosynthetic and stress-protective enzymes. Mol. Plant, 2010, 3, 927-939.
  • 3. Ashihara H., Sano H., Crozier A., Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 2008, 69, 841–856.
  • 4. Ashraf M.M., Akram N.A., Arteca R.N., Foolad M.R., The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci., 2010, 29, 162-190.
  • 5. Bassoli B.K., Cassolla P., Borba-Murad G.R., Constantin J., Salgueiro- Pagadigorria C.L., Bazotte R.B., Da Silva R.S., De Souza H.M., Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycemia. Cell Biochem. Funct., 2008, 26, 320-328.
  • 6. Baumann T.W., Gabriel H., Metabolism and excretion of caffeine during germination of Coffea arabica L. Plant Cell Physiol., 1984, 25, 1431-1436.
  • 7. Bent A.F., Mackey D., Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol., 2007, 45, 399-436.
  • 8. Bhattacharya A., Chattopadhyay A., Mazumdar D., ChakravartyA., Pal S., Antioxidant constituents and enzyme activities in chilli peppers. Int. J. Veg. Sci., 2010, 16, 201-211.
  • 9. Bialczyk J., Latkowska E., Lechowski Z., Allelopathic effects of (+)-usnic acid on some phytohormone concentrations in tomato plants. Allelopathy J., 2011, 28, 115-122.
  • 10. Boller T., Felix G., A renaissance of elicitors: Perception of microbeassociated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant. Biol., 2009, 60, 379-406.
  • 11. Brechner M.L., Albright L.D., Weston L.A., Effects of UV-B on secondary metabolites of St. John’s wort (Hypericum perforatum L.) grown in controlled environments. Photochem. Photobiol., 2011, 87, 680-684.
  • 12. Brechner M.L., Some effects of light quantity and quality on secondary metabolites hyperforin, pseudohypericin and hypericin in Hypericum perforatum. 2008, Ph.D. Dissertation, Cornell University NY, pp. 141–142.
  • 13. Cameron S.I., Smith R.F., Kierstead K.E., Linking medicinal/nutraceutical products research with commercialization. Pharmac. Biol., 2005, 43, 425-433.
  • 14. Canter P.H., Thomas H., Ernst E., Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol., 2005, 23, 180-185.
  • 15. Chen F., Liu C., Tschaplinski T.J., Zhao N., Genomics of secondary metabolism in Populus: Interactions with biotic and abiotic environments. Crit. Rev. Plant Sci., 2009, 28, 375-392.
  • 16. Cheng K., Lin J., Wu J., Liu W., Isofl avone conversion of black soybean by immobilized Rhizopus spp. Food Biotechnol., 2010, 24, 312-331.
  • 17. Cote J.J., Caillet S.S., Doyon G.G., Sylvain J.F., Lacroix M.M. Analyzing cranberry bioactive compounds. Crit. Rev. Food Sci. Nutr., 2010, 50, 872-888.
  • 18. Dombrecht B., Xue G.P., Sprague S.J., MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell, 2007, 19, 2225-2245.
  • 19. Du H., Huang Y., Tang Y., Genetic and metabolic engineering of isoflavonoids biosynthesis. Appl. Microb. Biotechnol., 2010, 86, 1293-1312.
  • 20. Evangelista Z.M., Moreno A.E., Metabolitos secundarios de importancia farmacéutica producidos por actinomicetos. Biotecnologia, 2007, 11, 37-50.
  • 21. Ferrari S., Biological elicitors of plant secondary metabolites: Mode of action and use in the production of nutraceutic. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 12, pp. 152-166.
  • 22. Fine P.V.A., Miller Z.J., Mesones I., Irazuzta S., Appel H.M., Stevens M.H.H., The growth defense trade-off and habitat specialization by plants in Amazonian forest. Ecology, 2006, 87, S150-S162.
  • 23. Fucile G., Falconer S., Christendat D., Evolutionary diversifi cation of plant shikimate kinase gene duplicates. PLoS genetics, 2008, 4, e1000292, 1-6.
  • 24. Fujisawa M., Watanabe M., Choi S.K., et al., Enrichment of carotenoids in fl axseeds (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J. Biosci. Bioeng, 2008, 105, 636-641.
  • 25. Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K., Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant. Biol., 2006, 9, 436-442.
  • 26. Genovese S., Curini M., Epifano F., Chemistry and biological activity of azoprenylated secondary metabolites. Phytochemistry, 2009, 70, 1082-1091.
  • 27. George E.F., Hall M.A., De Klerk G.J., Plant Propagation by Tissue Culture: The Background. 2007, 3th Edition, Vol. 1, Springer, Berlin (Germany).
  • 28. Gientka I., Duszkiewicz-Reinhard W., Shikimate pathway in yeast cells: enzymes, functioning, regulation – review. Pol. J. Food Nutr. Sci, 2009, 59, 113-118.
  • 29. Gorovits R., Czoznek H., Biotic and abiotic stress responses in tomato breeding lines resistant and susceptible to tomato yellow leaf curl virus. 2007, in: Tomato Yellow Leaf Curl Virus Disease (ed. H. Czosnek). Springer, Chapter 6, pp. 223-237.
  • 30. Gottlieb O.R., Phytochemicals: differentiation and function. Phytochemistry, 1990, 29, 1715-1724.
  • 31. Grindberg R.V., Ishoey T., Brinza D., Esquenazi E., Coates R., Wei-Ting L., Gerwick W.H., Single cell genome amplifi cation accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. Plos ONE, 2011, 6, e18565, 1-12.
  • 32. Grindberg R.V., Shuman C.F., Sorrels C.M., Wingerd J., Gerwick W.H., Neurotoxic alkaloids from cyanobacteria. 2007, in: Modern Alkaloids (ed. E. Fattorusso). POT-S, pp. 139–170.
  • 33. Gu X.-D., Sun M.Y., Zhang L., Fu H.W., Cui L., Chen R.Z., Zhang D.W., Tian J.K., UV-B induced changes in the secondary metabolites of Morus alba L. leaves. Molecules, 2010, 15, 2980- -2993.
  • 34. Gunel T., Kuntz M., Arda N., Erturk S., Temizkan G., Metabolic engineering for production of geranylgeranyl pyrophosphate synthase in noncarotenogenic yeast Schizosaccharomyces pombe. Biotechnol. Biotechnol. Eq., 2006, 20, 76-82.
  • 35. Helmja K., Vaher M., Gorbatsova J., Kaljurand M., Characterization of bioactive compounds contained in vegetables of the Solanaceae family by capillary electrophoresis. Proc. Estonian Acad. Sci. Chem., 2007, 56, 172-186.
  • 36. Holopainen J.K., Heijari J., Nerg A.M., Vuorinen M., Kainulainen P., Potential for the use of exogenous chemical elicitors in disease and insect pest management of conifer seedling production. Open. For. Sci. J., 2009, 2, 17-24.
  • 37. Hounsome N., Hounsome B., Tomos D., Edwards-Jones G., Plant metabolites and nutritional quality of vegetables. J. Food Sci., 2008, 73, P48-P65.
  • 38. Hussain S., Fareed S., Ansari S., Rahman A., Iffat-Zareen A., Saeed M., Current approaches toward production of secondary plant metabolites. J. Pharm. Bioall. Sci., 2012, 4, 10-20.
  • 39. Ibrahim M.H., Jaafar H.Z.E, Rahmat A., Abdul R.Z., Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip Fatimah (Labisia pumila Blume). Int. J. Mol. Sci., 2011, 12, 5238-5254.
  • 40. Iriti M., Faoro F. Chemical diversity and defense metabolism: how plants cope with pathogens and ozone pollution. Int. J. Mol. Sci., 2009, 10, 3371-3399.
  • 41. Jeong C.S., Chakrabarty D., Hahn E.J., Lee H.L., Paek K.Y., Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochem. Eng. J., 2006, 27, 252-263.
  • 42. John J., Sarada S.S., Role of phenolics in allelopathic interactions. Allelopathy J., 2012, 29, 215-229.
  • 43. Kazan K., Manners J.M., Jasmonate signaling: toward an integrated view. Plant Physiol., 2008, 146, 1459–1468.
  • 44. Khadem S., Marles R.J., Chromone and flavonoid alkaloids: Occurrence and bioactivity. Molecules, 2012, 17, 191-206.
  • 45. Kotilainen T., Tegelberg R., Julkunen-Tiitto R., Lindfors A., Aphalo P.J., Metabolite specifi c effects of solar UV-A and UV-B on alder and birch leaf phenolics. Global Change Biology, 2008, 14, 1294-1304.
  • 46. Krzyzanowska J., Czubacka A., Oleszek W., Dietary phytochemicals and human health. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 7, pp. 74-99.
  • 47. Latkowska E., Lechowski Z., Białczyk J., Responses in tomato roots to stress caused by exposure to (+)-usnic acid. Allelopathy J., 2008, 21, 239-252.
  • 48. Lattanzio V., Lattanzio V.M.T., Cardinali A., Role of phenolic in the resistance mechanisms of plants against fungal pathogens and insects. 2006, in: Phytochemistry: Advances in Research (ed. F. Imperato). Research Signpost, Kerala, India, pp. 23-67.
  • 49. Le Gall G., DuPont M.S., Mellon F.A., Davis A.L., Collins G.J., Verhoeyen M.E., Colquhoun I.J., Characterization and content of flavonoid glycosides in genetically modifi ed tomato (Lycopersicon esculentum) fruits. J. Agric. Food. Chem., 2003, 51, 2438––2446.
  • 50. Lee J.S., Latimer L.J., Hampel K.J. Coralyne binds tightly to both T.A.T. – and C. G. C. (+)-containing DNA triplexes. Biochemistry, 1993, 32, 5591-5597.
  • 51. Lefl aive J., Ten-Hage L., Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol., 2007, 52, 199-214.
  • 52. Lessard P., Metabolic engineering: the concept coalesces. Nat. Biotechnol., 1996, 14, 1654-1655.
  • 53. Li Q., Kubota Ch., Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Env. Exp. Botany, 2009, 67, 59-64.
  • 54. Liu W.K., Xu S.X., Che C.T., Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci., 2000, 67, 1297-1306.
  • 55. Lucchesini M., Bertoli A., Mensuali-Sodi A., Pistelli L., Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. Sci. Hortic., 2009, 122, 484–490.
  • 56. Lucchesini M., Mensuali-Sodi A., Plant tissue culture – an opportunity for the production of nutraceuticals. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 14, pp. 186-202.
  • 57. Lucchesini M., Monteforti G., Mensuali S.A., Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture conditions. Biologia Plantarum, 2006, 50, 161-168.
  • 58. Magalhães S.T.V., Guedes R.N.C., Demuner A.J., Lima E.R., Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella. B. Entom. Res., 2008, 98, 483-489.
  • 59. Matsufuji H., Ishikawa K., Nunomura O., Chino M., Takeda M., Anti-oxidant content of different colored sweet peppers, white, green, yellow, orange and red (Capsucum annuum L.). Int. J. Food Sci. Tech., 2007, 42, 1482-1488.
  • 60. Mattoo A.K., Shukla V., Fatima T., Handa A.K., Yachha S.K., Genetic engineering to enhance crop-based phytonutrients (Nutraceiticals) to alleviate diet-related diseases. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 10, pp. 123-143.
  • 61. Mazid M., Khan T., Mohammad F., Effect of abiotic stress on synthesis of secondary plant products: A Critical Review. Agric. Rev., 2011, 32, 172-182.
  • 62. Mejia-Teniente, L., Torres-Pacheco I., Gonzalez-Chavira M.M., Ocampo-Velazquez R.V., Herrera-Ruiz G., Chapa- Oliver A.M., Guevara-Gonzalez R.G., Use of elicitors as an approach for sustainable agriculture. Afr. J. Biotech., 2010, 9, 9155-9162.
  • 63. Morales L.O., Tegelberg R., Brosché M., Keinänen M., Lindfors A., Aphalo P.J., Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol., 2010, 30, 923-934.
  • 64. Newman D.J., Cragg G.M., Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70, 461-477.
  • 65. Niraula N.P., Kim S.H., Sohng J.K., Kim E.S., Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl. Microbiol. Biotechnol., 2010, 87, 1187-1197.
  • 66. Nunnery J.K., Mevers E., Gerwick W.H., Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol., 2010, 21, 787-793.
  • 67. Oldiges M., Lütz S., Pfl ug S., Schroer K., Stein N., Wiendahl C., Metabolomics: current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol., 2007, 76, 495-511.
  • 68. Oswald M., Fischer M., Dirninger N., Karst F., Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res., 2007, 7, 413-421.
  • 69. Paiva P.M.G., Gomes F.S., Napoleão T.H., Sá R.A., Correia M.T.S., Coelho C.B.B., Antimicrobial activity of secondary metabolites and lictins from plants. Res. Technol. Edu. Top. Appl. Microb. Biotechnol., 2010, 396-406 [http://www.formatex.info/ microbiology2/396-406.pdf].
  • 70. Parsaeimehr A., Sargsyan E., Vardanyan A., Expression of secondary metabolites in plants and their useful perspective in animal health. ABAH Biofl ux, 2011, 3, 115-124.
  • 71. Peterhansel C., Niessen M., Kebeish R.M., Metabolic Engineering towards the enhancement of photosynthesis. Photochem. Photobiol., 2008, 84, 1317-1323.
  • 72. Prasanna R., Sood A., Jaiswal P., Nayak S., Gupta V., Chaudhary V., Joshi M., Natarajan C., Rediscovering cyanobacteria as valuable sources of bioactive compounds (Review). Appl. Biochem. Microbiol., 2010, 46, 119-134.
  • 73. Rea G., Antonacci A., Lambreva M., Margonelli A., Ambrosi C., Giardi M.T., The NUTRASNACKS Project: Basic research and biotechnological programs on nutraceutical. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 1, pp. 1-16.
  • 74. Rippert P., Puyaubert J., Grisollet D., Derrier L., Matringe M., Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol., 2009, 149, 1251–1260.
  • 75. Rodríguez-Burruezo A., Prohens J., Raigón M. D., Nuez F., Variation for bioactive compounds in aji (C. pubencens R. & P.) and implications for breeding. Euphytica, 2009, 170, 169-181.
  • 76. Rohmer M., The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep., 1999, 16, 565–574.
  • 77. Sainis I., Fokas D., Vareli K., Tzakos A. G., Kounnis V., Briasoulis E., Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar. Drugs, 2010, 8, 629-657.
  • 78. Satwadhar P.N., Deshpande H.W., Syed I.H., Syed K.A., Nutritional compounds and identification of some of the bioactive compounds in Morinda citrifolia juice. Int. J. Pharm. Pharm. Sci., 2011, 3, 58-59.
  • 79. Saviranta H.K., Julkunen-Tiitto R., Oksanen E., Karjalainen R.O., Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Env. Poll., 2010, 158, 440-446.
  • 80. Schijlen E., Ric deVos C.H., Jonker H., Broeck H.V.D., Molthoff J., vanTunen A.V, Martens S., Bovy A., Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol. J., 2006; 4, 433-444.
  • 81. Schmeltz I., Nicotine and other tobacco alkaloids. 1971, in: Naturally Occurring Insecticides (eds. M. Jacobson, D.G. Crosby). Marcel Dekker, New York, pp. 99-136.
  • 82. Shilpa K.K., Varun K.K., Lakshmi B.S., An alternate method of natural drug production: eliciting secondary metabolite production using plant cell culture. J. Plant Sci., 2010, 5, 222-247.
  • 83. Siddiqui M.S., Thodey K., Trenchard I., Smolke C.D., Advancing secondary metabolites I yeast with synthetic biology tools. FEMS Yeast Res., 2012, 12, 144-170.
  • 84. Spoel H.S., Dong X., How do plants achieve immunity? Defense without specialized immune cells. Nature Rev. Immunol., 2012, 12, 89-100.
  • 85. Sun T., Xu Z., Wu C.T., Janes W., Prinyawiwatkul W., No H.K., Antioxidant activities of different colored sweet bell pepper (Capsicum annuum L.). J. Food Sci., 2007, 72, S98-S102.
  • 86. Tyagi S., Singh U., Kalra T., Munjal K., Applications of metabolomics – a systematic study of the unique chemical fingerprints: an overview. Int. J. Pharm. Sci. Rev. Res., 2010, 3, 83-86.
  • 87. Vanamala J., Leonardi T., Patil B.S., Taddeo S.S., Murphy M.E., Pike L.M., Chapkin R.S., Lupton J.R., Turner N.D., Suppression of colon carcinogenesis by bioactive compounds in grapefruit. Carcinogenesis, 2006, 27, 1257-1265.
  • 88. Verhoeyen M.E., Bovy A., Collins G., Muir S., Robinson S., de Vos C.H.R., Colliver S., Increasing antioxidant levels in tomatoes through modifi cation of the flavonoid biosynthetic pathway. J. Exp. Bot., 2002, 53, 2099–2106.
  • 89. Victório C., Leal-Costa M., Schwartz Tavares E., Machado Kuster R., Salgueiro Lage C., Effects of supplemental UV-A on the development, anatomy and metabolite production of Phyllanthus tenellus cultured in vitro. Photochem. Photobiol., 2011 87, 685-689.
  • 90. Vogt T., Phenylpropanoid biosynthesis. Mol. Plant, 2010, 3, 2-20.
  • 91. Wan Ch., Yu Y., Zhou S., Tian S., Cao S., Isolation and identification of phenolic compounds from Gynura divaricata leaves. Pharmacognosy Magazine, 2011, 7 (26), 101-108.
  • 92. Winks M., Schimmer O., Modes of action of defensive secondary metabolites. Function of Plant SMs and their exploitation in biotechnology. Annu. Plant Rev., 1999, 17-133.
  • 93. Xu M., Dong J., Wang H., Huang L., Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitorinduced flavonol glycoside accumulation of Ginkgo biloba cells. Plant Cell Env., 2009, 32, 960-967.
  • 94. Yadav S., Sinha R.P., Tyagi M.B., Kumar A., Cyanobacterial secondary metabolites. Int. J. Pharm. Bio. Sci., 2011, 2, B144- -B167.
  • 95. Yamada T., Matsuda F., Kasai K., Fukuoka S., Kitamura K., Tozawa Y., Miyagawa H., Wakasa K., Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell, 2008, 20, 1316–1329.
  • 96. Yan Y.J.., Kohli A., Koffas M.A.G., Biosynthesis of natural fl avanones in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 2005, 71, 5610-5613.
  • 97. Yao L.H., Jiang Y.M., Shi J., Tomas-Barberan F.A., Datta N., Singanusong R., Chen S.S., Flavonoids in food and their health benefits. Plant Foods Human Nutr., 2004, 59, 113–122.
  • 98. Yu B., Lydiate D.J., Young L.W., Enhancing the carotenoid content of Brassica napus seeds by down regulating lycopene epsilon cyclase. Transg. Res., 2008, 17, 573-585.
  • 99. Zhang J., Shi J., Ilic S., Jun X.S., Kakuda Y., Biological properties and characterization of lectin from red kidney bean (Phaseolus vulgaris). Food Rev. Int., 2009, 25, 12-27.
  • 100. Li Z.H., Wang Q., Ruan X., Pan C.D., Jiang D.A., Phenolics and plant allelopathy. Molecules, 2010, 15, 8933-8952.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-44d0bad1-5623-41e1-bd46-1ae3c2d43420
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.