PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 05 | 1 |

Tytuł artykułu

Insulinoodporność komórki wątrobowej

Warianty tytułu

EN
Insulin resistance of a liver cell

Języki publikacji

PL EN

Abstrakty

PL
Insulinooporność oznacza upośledzoną wrażliwość tkanek na insulinę, najczęściej związaną z defektem insulinowego szlaku przekaźnictwa wewnątrzkomórkowego sygnału. Insulinooporność hepatocytów manifestuje się przede wszystkim niekontrolowaną produkcją i uwalnianiem glukozy z wątroby, czego skutkiem jest hiperglikemia. Prowadzi do zaburzeń metabolicznych, zwłaszcza dotyczących gospodarki węglowodanowej, jak również lipidowej prowadząc do nadmiernej akumulacji lipidów w wątrobie. Wewnątrzkomórkowy nadmiar lipidów estryfikowany jest przede wszystkim do triacylogliceroli (TAG), diacylogliceroli (DAG) i ceramidów (CER), które w sposób bezpośredni interferują z insulinowym szlakiem przekaźnictwa sygnału, nasilając insulinooporność hepatocytów. Wzrost zawartości diacylogliceroli wewnątrz hepatocytów powoduje wzmożenie aktywności kinazy białkowej C (PKC), a nadmierna akumulacja ceramidów może być przyczyną inaktywacji kinazy białkowej B (PKB), czego skutkiem jest fosforylacja i dezaktywacja substratu receptora insulinowego (IRS-1), co prowadzi do zmniejszenia translokacji transporterów dla glukozy do błony komórkowej (GLUT-2). Znaczenie insulinooporności hepatocytów przede wszystkim objawaia się rozwojem zespolu metabolicznego, wzrostem ryzyka sercowo-naczyniowego i przewpleklym prozesem zapalanym i nowotworzeniem.
EN
Insulin resistance means impaired sensitivity of tissues to insulin, most often associated with a defect of the insulin intracellular signal transmission route. Insulin resistance of hepatocytes manifests itself mainly with uncontrolled production and release of glucose from the liver, which results in hyperglycaemia. This leads to metabolic disorders, especially concerning the carbohydrate as well as lipid metabolism, resulting in excessive accumulation of lipids in the liver. The intracellular excess of lipids is mostly esterificated to triacylglycerides (TAG), diacylglycerides (DAG) and ceramides (CER), which directly interfere with the insulin signal transmission route, intensifying the insulin resistance of hepatocytes. Increase in the content of diacylglycerides inside hepatocytes causes increased activity of protein kinase C (PKC), while excessive accumulation of ceramides may cause inactivation of protein kinase B (PKB), which results in phosphorylation and deactivation of the insulin substrate receptor (IRS-1), which leads to reduction of translocation of glucose transporters (GLUT-2) to the cell membrane. The importance of insulin resistance of hepatocytes chiefly manifests itself in the development of the metabolic syndrome, growth of the heart-vascular risk and a chronic inflammatory process and carcinogenesis.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

05

Numer

1

Opis fizyczny

s.113-126,bibliogr.

Twórcy

autor
  • Uniwersytet Medyczny w Lublinie, Lublin
  • Państwowa Szkoła Wyższa im.Papieża Jana Pawła II w Białej Podlaskiej, Biała Podlaska
autor
  • Uniwersytet Medyczny w Lublinie, Lublin
  • Państwowa Szkoła Wyższa im.Papieża Jana Pawła II w Białej Podlaskiej, Biała Podlaska
  • Uniwersytet Medyczny w Lublinie, Lublin
autor
  • Uniwersytet Medyczny w Lublinie, Lublin
autor
  • Uniwersytet Medyczny w Lublinie, Lublin

Bibliografia

  • 1. Antonetti D.A., Algenstaedt P., Kahn C.R. (1996). Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol Cell Biol., 16, s. 2195-2203.
  • 2. Barazzoni R., Kiwanuka E., Zanetti M., Cristini M., Vettore M., Tessari P. (2003). Insulin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes. Diabetes., 52, s. 1851-1856.
  • 3. Barter P. (2005). The realities of dyslipidaemia in metabolic syndrome and diabetes. Br J Diabetes Vasc Dis., 5(1), s. 7–11.
  • 4. Belfort R., Harrison S.A., Brown K., Darland C., Finch J., Hardies J., Balas B., Gastaldelli A., Tio F., Pulcini J., Berria R., Ma J.Z., Dwivedi S., Havranek R., Fincke C., DeFronzo R., Bannayan G.A., Schenker S., Cusi K. (2006). A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med., 355, s. 2297-2307
  • 5. Carrasco S., Merida I. (2007). Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci., 32, s. 27– 36.
  • 6. Chang L., Chiang S.H., Saltiel A.R. (2004). Insulin signaling and the regulation of glucose transport. Mol Med., 10, s. 65–71
  • 7. Chavez J.A., Knotts T.A., Wang L..P, Li G., Dobrowsky R.T., Florant G.L., Summers S.A. (2003). A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem., 278, s. 10297–10303.
  • 8. Chen M.T., Kaufman L.N., Spennetta T., Shrago E. (1992). Effects of high fatfeeding to rats on the interrelationship of body weight, plasma insulin, and fatty acyl-coenzyme A esters in liver and skeletal muscle. Metabolism., 41, s. 564–569
  • 9. Chin J.E., Dickens M., Tavare J.M., Roth R.A. (1993). Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J Biol Chem., 268, s. 6338–6347
  • 10. Chitturi S, Farrell G, Frost L, Kriketos A, Lin R, Fung C, Liddle C, Samarasinghe D, George J. (2002). Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology, 36, s. 403-9.
  • 11. Day C.P. (2002). Pathogenesis of steatohepatitis. Best. Pract.. Res. Clin. Gastroenterol., 16, s. 663-678
  • 12. De Fea K., Roth R.A. (1997). Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry., 36, s. 12939–12947
  • 13. Diraison F., Moulin P., Beylot M. (2003). Contribution of hepatic de novo lipogenesis and reesterification of plasma non-esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab., 29, s. 478-485
  • 14. Eckel R.H., Grundy S.M., Zimmet P.Z. (2005). The metabolic syndrome. Lancet., 365, s. 1415-1428
  • 15. Etgan G.J., Valasek K.M., Broderick C.L. (1999). IN vivo adenoviral delivery of recombinant human protein kinase C-zeta stimulates glucose transport activity in rat skeletal muscle. J Biol Chem., 274, s. 22139-22142
  • 16. Gibbons G.F., Brown A.M., Wiggins D., Pease R. (2002). The roles of insulin and fatty acids in the regulation of hepatic very-low-density lipoprotein assembly. J R Soc Med., 95(42), s.29-32
  • 17. Giddings S.J., Carnaghi L.R. (1992). Insulin receptor gene expression during development: developmental regulation of insulin receptor mRNA abundance in embryonic rat liver and yolk sac, developmental regulation of insulin gene splicing, and comparison to abundance of insulin-like growth factor 1 receptor mRNA. Mol Endocrinol., 6(10), s. 1665-1672
  • 18. Govers R., Coster A.C., James D.E. (2004). Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol Cell Biol. , 24, s. 6456–6466
  • 19. Griffin M.E., Marcucci M.J., Cline G.W., Bell K., Barucci N., Lee D., Goodyear L.J., Kraegen E.W., White M.F., Shulman G.I. (1999). Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin cascade. Diabetes., 48, s. 1270-1274
  • 20. Grundy S.M., Brewer B., Cleeman J.I., Smith S.C., Lenfant C. (2004). Definition of metabolic syndrome. Report of the National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to defi nition. Circulation., 109, s. 433–438
  • 21. Hellerstein M.K., Neese R.A., Schwarz J.M., Turner S., Faix D., Wu K. (1997). Altered fluxes responsible for reduced hepatic glucose production and gluconeogenesis by exogenous glucose in rats. Am J Physiol., 272, s. 163-172
  • 22. Holland W.L., Knotts T.A., Chavez J.A., Wang L.P., Hoehn K.L., Summers S.A. (2007). Lipid mediators of insulin resistance. Nutr Rev., 65, s. 39–46
  • 23. Holland W.L., Summers S.A. (2008). Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev., 29, s. 381–402
  • 24. Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. (1996). IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α and obesity-induced insulin resistance. Science., 271, s. 665-668
  • 25. Hue L., Maisin L., Rider M.H. (1988). Palmitate inhibits liver glycolisis; involment of fructose 2, 6-biophosphatase in the glucose/fatty acid cycle. Bioch J., 251, s. 541-545
  • 26. Itani S.I., Ruderman N.B., Schmieder F., Boden G. (2002). Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes., 51, s. 2005-2011
  • 27. Kanety H., Feinstein R., Papa M.Z., Hemi R., Karasik A. (1995). Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1). J Biol Chem., 270, s. 23780-23784
  • 28. Klip A., Paquet M.R. (1990). Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care., 13, s. 228-243
  • 29. Kohler H.P. Grant P.J. (2000). Plasminogen activator inhibitor type 1 and coronary artery disease. N Engl J Med., 342, s. 1792–1801
  • 30. Krook A., Bjornholm M., Galuska D., Jiang X.J., Fahlman R., Myers M.G., Walberg-Henriksson H., Zierath J.R. (2000). Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes., 49, s. 284-292
  • 31. Kuper H., Tzonou A., Kaklamani E., Hsieh C.C., Lagiou P., Adami H.O., Trichopoulos D., Stuver S.O. (2000). Tobacco smoking, alcohol consumption and their interaction in the causation of hepatocellular carcinoma. Int J Cancer., 85, s. 498–502
  • 32. Lam T.K., Yoshii H., Haber C.A., Bogdanovic E., Lam L., Fantus I.G., Giacca A. (2002). Free fatty acid induced hepatic insulin resistance: a potential role protein kinase C-delta. Am J Physiol Endocrinol Metab., 283, s. 682- 691
  • 33. Le Roith D., Zick Y. (2001). Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care., 24, s. 588-597
  • 34. Lee J., Pilch P.F., Shoelson S.E., Scarlata S.F. (1997). Conformational changes of the IR upon insulin binding and activation as monitored fluorescence spectroscopy. Biochemisty., 36, s. 2701-2708
  • 35. Li X.L., Man K., Ng K.T., Sun C.K., Lo C.M., Fan S.T. (2005). The influence of phosphatidylinositol 3-kinase/Akt pathway on the ischemic injury during rat liver graft preservation. Am J Transplant., 5, s. 1264–1275
  • 36. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N. (2001). Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes, 50, s. 1844-50.
  • 37. McAuley K.A., Williams S.M., Mann J.I., Walker R.J., Lewis-Barned N.J., Temple L.A., Duncan A.W. (2001). Diagnosing insulin resistance in the general population. Diabetes Care., 24, s. 460-464
  • 38. Mertens I., Van Gaal L.F. (2002). Obesity, haemostasis and the fibrinolytic system. Obes Rev., 3, s. 85-101
  • 39. Meyer S.G., de Groot H. (2003). Cycloserine and threo-dihydrosphingosine inhibit TNF-alpha-induced cytotoxicity: evidence for the importance of de novo ceramide synthesis in TNF-alpha signaling. Biochim Biophys Acta., 1643, s. 1–4
  • 40. Nonogaki K., Fuller G.M., Fuentes N.L., Moser A.H., Staprans I., Grunfeld C., Feingold K.R. (1995). Interleukin- 6 stimulates hepatic trigliceride secretion in rats. Endocrinology., 136, s. 2143-2148
  • 41. Oakes N.D., Cooney G.J., Camilleri S., Chisholm D.J., Kraegen E.W. (1997). Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes., 46, s. 1768–1774
  • 42. Olszanecka-Glinianowicz M., Zahorska-Markiewicz B., Kocełak P., Janowska J., Holecki M., Semik-Grabarczyk E. (2006). Wpływ redukcji masy ciała na stężenie interleukiny-6 (IL-6) i insulinooporność. Endokrynol Pol., 57, s. 131–135
  • 43. Orellana A., Hidalgo P.C., Morales M.N., Mezzano D., Bronfman M. (1990). Palmitoyl-CoA and the acyl-CoA thioester of the carcinogenic peroxisome- proliferator ciprofibrate potentiate diacylglycerol-activated protein kinase C by decreasing the phosphatidylserine requirement of the enzyme. Eur J Biochem., 190, s. 57–61
  • 44. Paz K., Hemi R., Le Roith D., Karasik A., Elhanany E., Kanety H., Zick Y. (1997). A molecular basis for insulin resistance: elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem., 272, s. 29911-29918
  • 45. Raynaud E., Perez-Martin A., Brun J., Aissa-Benhaddad A., Fedou C., Mercier J. (2000). Relationships between fibrinogen and insulin resistance. Atherosclerosis., 150, s. 365-370
  • 46. Sanyal A.J. (2003). Insulin resistance and tissue repair: a "fatological" phenomenon. Gastroenterology., 125, s. 1886-1889.
  • 47. Seifert R., Schachtele C., Rosenthal W., Schultz G. (1988). Activation of protein kinase C by cis- and trans-fatty acids and its potentiation by diacylglycerol. Biochem Biophys Res Commun., 154, s. 20–26
  • 48. Skolnik E.Y., Batzer A., Li N., Lee C.H., Lowenstein E., Mohammadi M., Margolis B., Schlessinger J. (1993). The function of GRB2 in linking the insulin receptor to ras signalling pathways. Science., 260, s. 1953-1955
  • 49. Summers S.A. (2006). Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res., 45, s. 42–72
  • 50. Tappy L., Minehira K. (2001). New data and new concepts on the role of the liver in glucose homeostasis. Curr Opin Clin Nutr Metab Care., 4, s. 273-277
  • 51. Teruel T., Hernandez R., Lorenzo M. (2001). Ceramide mediates insulin resistance by TNF-α in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes., 50, s. 2563-2571
  • 52. Unger R.H. (2003). Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology., 144, s. 5159-5165
  • 53. Virkamaki A., Ueki K., Kahn C.R. (1999). Protein-protein interaction in insulin signalling and the molecular mechanism of insulin resistance. J Clin Invest., 103, s. 931-943
  • 54. White M.F., Kahn C.R. (1994). The insulin-signaling system. J Biol Chem., 269, s.1-4

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-445f0b8e-b654-4892-8f06-35d96d33083d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.