PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Impacts of animal herbivory and water depth on seed germination and seedling survival of Vallisneria natans (Lour.) Hara and Hydrilla verticillata (L. f.) Royle

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Seed germination is an important reproductive pattern for submerged macrophytes. In order to investigate the effects of animal herbivory and water depth on seed germination and seedling survival of Vallisneria natans and Hydrilla verticillata, we conducted an in-situ field experiment at 3 water depths (0.5, 1, and 2 m) with net and non-net (control) groups in Hangzhou West Lake, China. The results showed that the highest germination rates appeared at 1 m water depth and the lowest germination rates appeared at 2 m water depth (p<0.05) for both species. The mean time to germination (MTG) values that indicate the velocity of germination are greater at 2 m water depth than that at 0.5 m and 1 m water depths for both V. natans and H. verticillata. Net protection obviously promoted germination rates of both species at 0.5 m and 1 m depths, especially for H. verticillata at 1 m (p<0.05). Germination rates of H. verticillata were higher than that of V. natans under any treatment (p<0.05). In the control, seedlings of both species were greatly grazed by herbivorous animals and the remaining seedling number showed no significant difference at different depths (p>0.05). Remaining seedling number in net group was significantly higher than that in control group (p<0.05). Grazing rate of H. verticillata was significantly higher than that of V. natans in control group at all 3 depths (p<0.05). Conclusively, both water depth and animal herbivory significantly influenced germination of V. natans and H. verticillata, and net protection proved to be an efficient method that could promote seedling survival for both species in the field.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.275-281,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • School of Life Science, Ludong University, Yantai, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

Bibliografia

  • 1. SØNDERGAARD M., JOHANSSON L.S., LAURIDSEN T.L., JORGENSEN T.B., LIBORIUSSEN L., JEPPESEN E. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biol. 55 (4), 893, 2010.
  • 2. PAN G., YANG B., WANG D., CHEN H., TIAN B.H., ZHANG M.L., YUAN X.Z., CHEN J.A. In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecol. Eng. 37 (2), 302, 2011.
  • 3. CARR J., D’ODORICO P., MCGLATHERY K., WIBERG P. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. J. Geophys. Res. 115 (G3), 2010.
  • 4. SAYER C.D., BURGESS A.M.Y., KARI K., DAVIDSON T.A., PEGLAR S., YANG H.D., ROSE N. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshwater Biol. 55 (3), 565, 2010.
  • 5. BLINDOW I., HARGEBY A., HILT S. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia. 737 (1), 99, 2014.
  • 6. RODRIGO M.A., ROJO C., ALONSO-GUILLÉN J.L., VERA P. Restoration of two small Mediterranean lagoons: the dynamics of submerged macrophytes and factors that affect the success of revegetation. Ecol. Eng. 54, 1, 2013.
  • 7. HILT S., KÖHLER J., ADRIAN R., MONAGHAN M.T., SAYER C.D. Clear, crashing, turbid and back-long-term changes in macrophyte assemblages in a shallow lake. Freshwater Biol. 58 (10), 2027, 2013.
  • 8. RIDDIN T., ADAMS J.B. The seed banks of two temporarily open/closed estuaries in South Africa. Aquat. Bot. 90 (4), 328, 2009.
  • 9. MARTIN C.W., VALENTINE J.F. Sexual and asexual reproductive strategies of invasive Eurasian milfoil (Myriophyllum spicatum) in estuarine environments. Hydrobiologia. 727 (1), 177, 2014.
  • 10. WALCK J.L., HIDAYATI S.N., DIXON K.W., THOMPOSON K., POSCHLOD P. Climate change and plant regeneration from seed. Global Change Biol. 17 (6), 2145, 2011.
  • 11. Ke X.S., Li W. Germination requirement of Vallisneria natans seeds: implications for restoration in Chinese lakes. Hydrobiologia. 559, 357, 2006.
  • 12. JARVIS J.C., MOORE K.A. Influence of environmental factors on Vallisneria americana seed germination. Aquat. Bot. 88, 283, 2008.
  • 13. WEYL P.S.R., COETZEE J.A. Morphological variations in southern African populations of Myriophyllum spicatum: Phenotypic plasticity or local adaptation?. S. Afr. J. Bot. 103, 241, 2016.
  • 14. BAKKER E.S., SARNEEL J.M., GULATI R.D., LIU Z.W., VAN DONK E. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia. 710 (1), 23, 2013.
  • 15. CONNOLLY S.R., BAIRD A.H. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology. 91 (12), 3572, 2010.
  • 16. LONG R.L., GORECKI M.J., RENTON M., SCOTT J.K., COLVILLE L., GOGGIN D.E., COMMANDER L.E., WESTCOTT D.A., CHERRY H., FINCH-SAVAGE W.E. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol. Rev. 90 (1), 31, 2015.
  • 17. CHEN K.N., BAO C.H., ZHOU W.P. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment. Ecol. Eng. 35 (11), 1646, 2009.
  • 18. KILIC S., KAHRAMAN A. The mitigation effects of exogenous hydrogen peroxide when alleviating seed germination and seedling growth inhibition on salinity-induced stress in Barley. Pol. J. Environ. Stud. 25 (3), 1053, 2016.
  • 19. BORNETTE G., PUIJALON S. Response of aquatic plants to abiotic factors: a review. Aquat. Sci. 73 (1), 1, 2011.
  • 20. NEPF H.M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123, 2012.
  • 21. VAN ZUIDAM B.G., PEETERS E.T.H.M. Wave forces limit the establishment of submerged macrophytes in large shallow lakes. Limnol. Oceanogr. 60 (5), 1536, 2015.
  • 22. BAL K.D., BOUMA T.J., BUIS K., STRUYF E., JONAS S., BACKX H., MEIRE P. Trade-off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology. Funct. Ecol. 25 (6), 1197, 2011.
  • 23. CAO Y., ZHANG S.J., LIU Y.Y., GUO Z.C., CHEN B.X. Effects of water gradient on seedlings growth and biomass of Vallisneria natans. Ecology and Environmental Sciences. 23, 1332, 2014 [In Chinese].
  • 24. XIAO K.Y., YU D., WU Z.H. Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans. Hydrobiologia. 589, 265, 2007.
  • 25. YU J.L., ZHEN W., GUAN B.H., ZHONG P., JEPPSEN E., LIU Z.W. Dominance of Myriophyllum spicatum in submerged macrophyte communities associated with grass carp. Knowl. Manag. Aquat. Ec. 417, 24, 2016.
  • 26. SUN J., MA L., WANG L., HU Y., ZHANG Y., WU Z.B., HE F. Assessing the effects of grass carp excretion and herbivory of submerged macrophytes on water quality and zooplankton communities. Pol. J. Environ. Stud. 26 (4), 2017.
  • 27. DORENBOSCH M., BAKKER E.S. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biol. 56 (9), 1783, 2011.
  • 28. ZEHNSDORF A., HUSSNER A., EISMANN F., RONICKE H., MELZER A. Management options of invasive Elodea nuttallii and Elodea canadensis. Limnologica. 51, 110, 2015.
  • 29. DIBBLE E.D., KOVALENKO K. Ecological impact of grass carp: a review of the available data. J. Aquat. Plant Manage. 47, 1, 2009.
  • 30. PIPALOVA I. Initial impact of low stocking density of grass carp on aquatic macrophytes. Aquat. Bot. 73, 9, 2002.
  • 31. KRUPSKA J., PEŁECHATY M., PUKACZ A., OSSOWSKI P. Effects of grass carp introduction on macrophyte communities in a shallow lake. Oceanol. Hydrobiol. St. 41, 35, 2012.
  • 32. RODRIGO M.A., ROJO C., ALONSO-GUILLÉN J.L., VERA P. Restoration of two small Mediterranean lagoons: the dynamics of submerged macrophytes and factors that affect the success of revegetation. Ecol. Eng. 54, 1, 2013.
  • 33. ZENG L., HE F., DAI Z.G., XU D., LIU B.Y., ZHOU Q.H., WU Z.B. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecol. Eng. 106, 578, 2017.
  • 34. RODRIGO M.A., ALONSO-GUILLÉN J.L., SOULIÉ-MÄRSCHE I. Reconstruction of theformer charophyte community out of the fructifications identified in Albuferade València lagoon sediments. Aquat. Bot. 92, 14, 2010.
  • 35. REDONDO-GÓMEZ S., MATEOS-NARANJO E., WHARMBY C., LUQUE C.J., CASTILLO J.M., LUQUE T., MOHAMED M.F., DAVY A.J., FIGUEROA M.E. Bracteoles affect germination and seedling establishment in a Mediterranean population of Atriplex portulacoides. Aquat. Bot. 86, 93, 2007.
  • 36. SCHELSKE C.L., LOWE E.F., KENNEY W.F., BATTOE L.E., BRENNER M., COVENEY M.F. How anthropogenic darkening of Lake Apopka induced benthic light limitation and forced the shift from macrophyte to phytoplankton dominance. Limnol. Oceanogr. 55 (3), 1201, 2010.
  • 37. ZHANG C., GAO X.P., WANG L.Y., CHEN X.J. Modelling the role of epiphyton and water level for submerged macrophyte development with a modified submerged aquatic vegetation model in a shallow reservoir in China. Ecol. Eng. 81, 123, 2015.
  • 38. ASMUS R., ASMUS H., VAN DUREN L. Introduction: Hydrodynamic control of aquatic ecosystem processes–How does water movement affect different levels of organisation?. Estuar Coast Shelf S. 75, 279, 2007.
  • 39. SU W.H, ZHANG G.F., ZHANG Y.S., XIAO H., XIA F. Photosynthetic characteristics of five submerged macrophytes. Acta Hydrobiologica Sinica. 4, 391, 2004 [In Chinese].
  • 40. BINZER T., SAND-JENSEN K., MIDDELBOE A.L. Community photosynthesis of aquatic macrophytes. Limnol. Oceanogr. 51 (6), 2722, 2006.
  • 41. BU H.Y., GE W.J., ZHOU X.H., QI W., LIU K., XU D.H., WANG X.J., DU G.Z. The effect of light and seed mass on seed germination of common herbaceous species from the eastern Qinghai-Tibet Plateau. Plant Spec. Biol. 32 (4), 263, 2017.
  • 42. LARSON J.E., FUNK J.L. Regeneration: an overlooked aspect of trait-based plant community assembly models. J. Ecol. 104 (5), 1284, 2016.
  • 43. MOORE K.A., ORTH R.J., NOWAK J.F. Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay effects of light, oxygen and sediment burial. Aquat. Bot. 45, 79, 1993.
  • 44. BRENCHLEY J.L., PROBERT R.J. Seed germination responses to some environmental factors in the seagrass Zostera capricorni from eastern Australia. Aquat. Bot. 62, 177, 1998.
  • 45. CABAÇO S., SANTOS R. Reproduction of the eelgrass Zostera marina at the species southern distributional limit in the Eastern Atlantic. Mar. Ecol. 31 (2), 300, 2010.
  • 46. HU J.J., LUO C.C., TURKINGTON R., ZHOU Z.K. Effects of herbivores and litter on Lithocarpus hancei seed germination and seedling survival in the understorey of a high diversity forest in SW China. Plant Ecol. 217, 1429, 2016.
  • 47. SANTOS J.C., ARAUJO N.A.V., VENÂNCIO H., ANDRADE J.F., ALVES-SILVA E., ALMEIDA W.R., CARMO-OLIVEIRA R. How detrimental are seed galls to their hosts? Plant performance, germination, developmental instability and tolerance to herbivory in Inga laurina, a leguminous tree. Plant Biology. 18, 962, 2016.
  • 48. VAN ZUIDAM B.G., PEETERS E.T. Wave forces limit the establishment of submerged macrophytes in large shallow lakes. Limnol. Oceanogr. 60, 1536, 2015.
  • 49. FRANKLIN P., DUNBAR M., WHITEHEAD P. Flow controls on lowland river macrophytes: a review. Sci. Total Environ. 400, 369, 2008.
  • 50. DORENBOSCH M., BAKKER E.S. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biol. 56, 1783, 2011.
  • 51. KAPUSCINSKI K.L., FARRELL J.M., STEHMAN S.V., BOYER G.L., FERNANDO D.D., TEECE M.A., TSCHAPLINSKI T.J. Selective herbivory by an invasive cyprinid, the rudd Scardinius erythrophthalmus. Freshwater Biol. 59, 2315, 2014.
  • 52. SUN J., WANG L., MA L., MIN F.L., HUANG T., ZHANG Y., WU Z.B., HE F. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella. Environ. Sci. Pollut. R. 1, 2017.
  • 53. KLOSKOWSKI J. Impact of common carp Cyprinus carpio on aquatic communities: direct trophic effects versus habitat deterioration. Fund. Appl. Limnol. 178 (3), 245, 2011.
  • 54. VAN DER WAL J.E.M., DORENBOSCH M., IMMERS A.K., FORTEZA C.V., GEURTS J.J.M., PEETERS E.T.H.M., KOESE B., BAKKER E.S. Invasive crayfish threaten the development of submerged macrophytes in lake restoration. Plos One. 8 (10), e78579, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-42614408-e327-4354-80f0-24daaa4082dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.