PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Adsorptive removal of Pb2plus ions from aqueous solutions by peat

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Peat has been evaluated as an efficient sorbent. In this paper, peat for removal of Pb²⁺ ions from aqueous solution was studied. Peat samples were analyzed for total lead, pH, humidity, and TC (total carbon). Major factors involved, including initial Pb concentration, contact time, and pH, also were investigated. The aqueous solution of lead(II) (0.25 mg/L, 25.0 mg/L, 50.0 mg/L, 75.0 mg/L, and 100.0 mg/L) was agitated at a fixed speed of 20 rpm for 5, 10, 20, 45, 90, 180, and 360 minutes, respectively. At the end of each contact time, the solid was removed by filtration through a 0.45 µm glass filter and then analyzed with an atomic absorption spectrophotometer. Adsorption capacity of peat increases with increasing contact time, initial lead(II) concentration, and was significantly affected by initial pH value in the range from 4.0-7.0. The amount of Pb adsorbed on peat was greatest at pH 6.0, 360 min contact time, and 100 mg/L lead(II) concentration, i.e. 9.489 mg/g. The Freundlich and Langmuir models were used to interpret the sorption behaviour of Pb²⁺ ions, and the results showed that the Freundlich model shows a better fitting than the Langmuir model according to correlation coefficients (R²>0.98, Freundlich model, R² >0.58 Langmuir model).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1213-1218,fig,ref.

Twórcy

autor
  • Department of Environmental Protection, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

Bibliografia

  • 1. FRIŠTÁK V., PIPÍŠKA M., LESNÝ J. Cd²⁺ Ions removal from aqueous solutions using alginite. International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering. 8, (4), 237, 2014.
  • 2. PUNDYTĖ N., BALTRĖNAITĖ E., PEREIRA P., PALIULIS D. Heavy metals and macronutrients transfer from soil to Pinus sylvestris L. Environmental engineering: 8th International conference, May 19-20, 2011, Vilnius, Lithuania: selected papers. Environmental protection/Vilnius Gediminas Technical University. Vilnius: Technika, ISSN 2029-710. 1, 308, 2011.
  • 3. QADEER R., AKHTAR S. Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem. 29, 95, 2005.
  • 4. MURATHAN, A. S., BÜTÜN M. Removal of lead ions from dilute aqueous solution in packed columns by using natural fruit shells through adsorption. Fresen. Environ. Bull. 15, (12A), 1491, 2006.
  • 5. GUEU S., YAO B., ADOUBY K., ADO G. Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. International Journal of Environmental Science and Technology. 4, (1), 11, 2007.
  • 6. CECHINEL M., SOUZA S., SOUZA A. Study of lead (II) adsorption onto activated carbon originating from cow bone. 2014. Journal of Cleaner Production. 65, 342, 2014.
  • 7. MOMČILOVIĆ M., PURENOVIĆ M., BOJIĆ A., ZARUBICA A., RANĐELOVIĆ. M. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination. 276, (1-3), 53, 2011.
  • 8. PAYNE K. B., ABDEL-FATTAH T. M. Adsorption of Divalent Lead Ions by Zeolites and Activated Carbon: Effects of pH, temperature, and ionic strength. J. Environ. Sci. Heal. A. A39, (9), 2275, 2004.
  • 9. ŞIMŞEK S., ULUSOY U. Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. J. Radioanal. Nucl. Ch. 292, (1), 41, 2012.
  • 10. MACHIDA M., FOTOOHI B., AMAMO Y., MERCIER L. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon. App. Surf. Sci. 258, (19), 7389, 2012.
  • 11. NING P., YANG Y. H., SHU D. T., SHI L., CHENG Y. The application of response surface methodology for adsorption optimization of lead (II) onto phosphogypsum. Advanced Materials Research. 955, 2026, 2014.
  • 12. JIN L., BAI R. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir. 18, (25), 9765, 2002.
  • 13. BAMGBOSE T., ADEWUYI S., BAMGBOSE O., ADETOYE A. Adsorption kinetics of cadmium and lead by chitosan. African Journal of Biotechnology. 9, (17), 2560, 2010.
  • 14. WAN NGAH W.S., FATINATHAN S. Pb(II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies. J. Environ. Sci. 22, (3), 338, 2010.
  • 15. AZOUAOU N., BELMEDANI M., MOKADDEM H., SADAOUI Z. Adsorption of Lead from Aqueous Solution onto Untreated Orange Barks. Chemical Engineering Transactions. 32, 55, 2013.
  • 16. XIONG J.B., MAHMOOD Q. Adsorptive removal of phosphate from aqueous media by peat. Desalination, 259, (1-3), 59, 2010.
  • 17. HO Y. S., MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735, 2000.
  • 18. HO Y.S., MCKAY G., WASE D.A.J., FORSTER C.F. Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18, (7), 639, 2000.
  • 19. DUARTE ZARAGOZA V.M., CARRILLO R., GUTIERREZ CASTORENA C.M. Lead sorption-desorption from organic residues. Environ. Technol. 32, (3-4), 353, 2011.
  • 20. ISO/TS 17073:2013. Soil quality-Determination of trace elements in aqua regia and nitric acid digests-Graphite furnace atomic absorption spectrometry method (GFAAS) pp. 20, 2013.
  • 21. PATEL H., VASHI R. T. A comparison study of removal of methylene blue dye by adsorption on Neem leaf powder (NLP) and activated NLP. Journal of Environmental Engineering and Landscape Management. 21, (1), 36, 2013.
  • 22. PUNDYTĖ N., BALTRĖNAITĖ E., PEREIRA P., PALIULIS D. Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L. Journal of Environmental Engineering and Landscape Management. 19, (1), 34, 2011.
  • 23. BULGARIU L., ROBU B., MACOVEANU M. The Pb(II) sorption from aqueous solutions by sphagnum moss peat. Revista De Chimie. 60, (2), 171, 2009.
  • 24. IVANOV A. A., YUDINA N. V., SAVEL’EVA A. V., SIZOVA N. V. Adsorption properties of modified peat toward organic compounds and heavy metals. Solid Fuel Chemistry. 47, (5), 288, 2013.
  • 25. HO Y. S. Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Pol. J. Environ. Stud. 15, (1), 81, 2006.
  • 26. SAMPRANPIBOON P., CHARNKEITKONG P. Equilibrium isotherm, thermodynamic and kinetic studies of lead adsorption onto pineapple and paper waste sludges. International Journal of Energy and Environment. 3, 88, 2013.
  • 27. POLAT A., ASLAN S. Kinetic and isotherm study of copper adsorption from aqueous solution using waste eggshell. Journal of Environmental Engineering and Landscape Management. 22, (2), 132, 2014.
  • 28. MOHAMMED A. A. Thermodynamics approach in the adsorption of heavy metals. Thermodynamics – Interaction Studies – Solids, Liquids and Gases. Dr. Juan Carlos Moreno Piraján (Ed.), ISBN: 978-953-307-563-1, InTech, pp. 738-765, 2011.
  • 29. METCALF E. Wastewater Engineering. Treatment and Reuse. pp. 1848, 2002.
  • 30. HASHEM A., KHERAIJE KHALID A. Al. Chemically Modified Cornulaca monacantha Biomass for Bioadsorption of Hg (II) from Contaminated Water: Adsorption Mechanism. Journal of Environmental Protection. 4, 280, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-424aea4a-d938-4256-b912-e54eee594974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.