PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |

Tytuł artykułu

The effect of calcium propionate supplementation on performance, meat quality, and mRNA expression of finishing steers fed a high-concentrate diet

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of calcium propionate supplementation on performance, meat quality, and mRNA expression of Wagyu steers were investigated. Eighteen steers (635 ± 20 kg; 18 ± 1 month old) were randomly divided into two groups: control (CG, without calcium propionate) and experimental (CaP, 200 g calcium propionate per steer per day). All steers were reared for 51 days under the same production system and then slaughtered at a final body weight of 680 ± 18 kg. The results showed no significant differences in dry matter intake, daily gain, or feed conversion ratio between the CaP and CG groups (P > 0.05). The treatments did not significantly affect the pH, drip loss, cooking loss, Warner–Bratzler shear, protein, fat and ash contents in meat (P > 0.05). The erucic acid (C22:1) content in group CaP was significantly lower than in CG (P < 0.05). The content of polyunsaturated fatty acids (PUFA) in CaP showed a decreasing trend compared with CG (P = 0.06). The expression of genes for peroxisome proliferator–activated receptor γ (PPARG) and CCAAT/ enhancer binding protein α (CEBPA), which are involved in adipogenesis, was significantly higher in group CaP than in CG (P < 0.05). The results indicate that supplementing calcium propionate did not affect animal performance, but changed the composition of meat fatty acids, especially PUFA and erucic acid, and could trigger upregulation of PPARG and CEBPA mRNA expression levels, which could cause long-term activation of adipogenesis. Therefore, the results of the present study point to the possibilities of improving meat quality through calcium propionate supplementation of the diet.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

2

Opis fizyczny

p.100-106,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
autor
  • Beijing University of Agriculture, College of Animal Science and Technology, Beijing 102206, China
autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
autor
  • State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

Bibliografia

  • Aiello R.J., Armentano L.E., Bertics S.J., Murphy A.T., 1989. Volatile fatty acid uptake and propionate metabolism in ruminant hepatocytes. J. Dairy Sci. 72, 942–949
  • Anil M.H., Forbes J.M., 1988. The roles of hepatic nerves in the reduction of food intake as a consequence of intraportalsodium propionate administration in sheep. Exp. Physiol. 73, 539–546
  • AOAC, 1999. Association of Official Analytical Chemists, Official Methods of Analysis. 16th Edition. Arlington, VA
  • Beem A.E., 2003. Use of urine pH to predict incidence of ketosis in transition dairy cows. M.S. Thesis. Louisiana State University, Baton Rouge, LA (USA)
  • Bergman E.N., 1975. Production and utilization of metabolites by the alimentary tract as measured in portal and hepatic. In: I.W. McDonald, A.C.I. Warner (Editors). Digestion and Metabolism in the Ruminant. University of New England Publishing Unit. Armidale, pp. 292–305
  • Bradford B.J., Allen M.S., 2007. Phlorizin administration does not attenuate hypophagia induced by intraruminal propionate infusion in lactating dairy cattle. J. Nutr. 137, 326–330
  • DeFrain J.M., Hippen A.R., Kalscheur K.F., Jardon P.W., 2004. Feeding glycerol to transition dairy cows: effects on blood metabolites and lactation performance. J. Dairy Sci. 87, 4195–4206
  • Duarte M.S., Paulino P.V.R., Das A.K., Wei S., Serão N.V.L., Fu X., Harris S.M., Dodson M.V., Du M., 2013. Enhancement of adipogenesis and fibrogenesis in skeletal muscle of Wagyu compared with Angus cattle. J. Anim. Sci. 91, 2938–2946
  • Evan D.R., Ormond A.M., 2006. Adipocyte differentiation from the inside out. Mol. Cell. Biol. 7, 885–896
  • Hong Y.H., Nishimura Y., Hishikawa D. et al., 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099
  • Issemann I., Green S., 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650
  • Jiang T., Mueller C.J., Busboom J.R., Nelson M.L., O’Fallon J., Tschida G., 2013. Fatty acid composition of adipose tissue and muscle from Jersey steers was affected by finishing diet and tissue location. Meat Sci. 93, 153–161
  • JMGA, 1988. New Beef Carcass Grading Standards. Japan Meat Grading Association. Tokyo (Japan)
  • Kutoba N., Terauchi Y., Miki H., Tamemoto H., Yamauchi T., Komeda K., 1999. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell. 4, 597–609
  • Lee S.H., Hossner K.L., 2002. Coordinate regulation of ovine adipose tissue gene express by propionate. J. Anim. Sci. 80, 2840–2849
  • Lee-Rangel H.A., Mendoza G.D., González S.S., 2012. Effect of calcium propionate and sorghum level on lamb performance. Anim. Feed Sci. Tech. 177, 237–241
  • Lekstrom H.J., Xanthopoulos K.G., 1998. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273, 28545–28548
  • Liu Q., Wang C., Guo G., Yang W.Z., Dong K.H., Huang Y.X., Yang X.M., He D.C., 2009a. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. J. Agr. Sci. 14, 201–209
  • Liu Q., Wang C., Yang W.Z., Guo G., Yang X.M., He D.C., Dong K.H., Huang Y.X., 2009b. Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. J. Anim. Physiol. Anim. Nutr. 1111, 605–614
  • Mach N., Bach A., Devant M., 2009. Effects of crude glycerin supplementation on performance andmeat quality of Holstein bulls fed high-concentrate diets. J. Anim. Sci. 87, 632–638
  • McNamara J.P., Valdez F., 2005. Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. J. Dairy Sci. 88, 2498–2507
  • Mir P.S., Bailey D.R.C., Mir Z., Entz T., Jones S.D.M., Rober T.W.M., Weselake R.J., Lozeman F.J., 1999. Growth, carcass and meat quality characteristics of beef cattle with 0, 50 and 75 percent Wagyu genetic influence. Can. J. Anim. Sci. 79, 129–137
  • Moisá S.J., Shike D.W., Faulkner D.B., Meteer W.T., Keisler D., Loor J.J., 2014. Central role of the PPARγ gene network in coordinating beef cattle intramuscular adipogenesis in response to weaning age and nutrition. Gene Regul. Syst. Bio. 8, 17–32
  • Neat C.E., Thomassen S.M., Osmundsen H., 1981. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Biochem. J. 196, 149–159
  • Nishimura T., Hattori A., Takahashi K., 1999. Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. J. Anim. Sci. 77, 93–104
  • Noci F., Mona H.F.J., French P., Moloney A.P., 2005. The fatty acid composition of muscle fat and subcutaneous adipose tissue of pasture-fed beef heifers: Influence of the duration of grazing. J. Anim. Sci. 83, 1167–1178
  • NRC, 2000. Nutrient Requirements of Beef Cattle. 7th Edition. National Academic Press. Washington, DC
  • O’Fallon J.V., Busboom J.R., Nelson M.L., Gaskins C.T., 2007. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feed stuffs. J. Anim. Sci. 85, 1511–1521
  • Osmundsen H., Neat C.E., Norum K.R., 1979. Peroxisomal oxidation of long chain fatty acids. FEBS Lett. 99, 292–296
  • Rigout S., Hurtaud C., Lemosquet S., Bach A., Rulquin H., 2003. Lactational effect of propionic acid and duodenal glucose in cows. J. Dairy Sci. 86, 243–253
  • Rosen E.D., Sarraf P., Troy A.E., Bradwin G., Moore K., Milstone D.S., Spiegelman B.M., Mortensen R.M., 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell. 4, 611–617
  • Smith S.B., Crouse J.D., 1984. Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. J. Nutr. 114, 792–800
  • Smith S.B., Go G.W., Johnson B.J., Chung K.Y., Choi S.H., Sawyer J.E., Silvey D.T., Gilmore L.A., Ghahramany G., Kim K.H., 2012. Adipogenic gene expression and fatty acid composition in subcutaneous adipose tissue depots of Angus steers between 9 and 16 months of age.J. Anim. Sci. 90, 2505–2514
  • USDA, 1989. Official United States Standards for Grades of Carcass Beef. Agricultural Marketing Service. USDA, Washington, DC
  • Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fibre, neutral detergent fibre and nonstarch carbohydrates inrelation to animal nutrition. J. Dairy Sci. 74, 3583–3597
  • Villalba J.J., Frederick D., Provenza F.D., 1996. Preference for flavored wheat straw by lamb conditioned with intraruminal administrations of sodium propionate. J. Anim. Sci. 74, 2362–2368
  • Wan R., Du J.P., Ren L.P., Meng Q.X., 2009. Selective adipogenic effects of propionate on bovine intramuscular and subcutaneous preadipocytes. Meat Sci. 82, 372–378
  • Wheeler T.L., Cundiff L.V., Shackelford S.D., Koohmaraie M., 2004. Characterization of biological types of cattle (Cycle VI): carcass, yield, and longissimus palatability traits. J. Anim. Sci. 82,1177–1189
  • Whitney M.B., Hess B.W., Burgwald-Balstad L.A., Sayer J.L., Tsopito C.M., Talbott C.T., Hallford D.M., 2000. Effects of supplemental soybean oil level on in vitro digestion and performance of prepubertal beef heifers. J. Anim. Sci. 78, 504–514
  • Wu Z., Rosen E.D., Brun R., Hauser S., Adelmant G., Troy A.E., McKeon C., Darlington G.J., Spiegelman B.M., 1999. Crossregulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell. 3, 151–158
  • Xiong Y., Miyamoto N., Shibata K., 2004. Short-chain fatty acids stimulate leptin production in adipocytes through the G proteincoupled receptor GPCR41. Proc. Nat. Acad. Sci. USA 101, 1045–1050
  • Yang A., Lanari M.C., Brewster M., Tume R.K., 2002. Lipid stability and meat color of beef from pasture- and grain-fed cattle with or without vitamin E supplement. Meat Sci. 60, 41–50

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4205a0d2-eecb-4348-8cdd-cb3b6d6abc8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.