PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 3 |

Tytuł artykułu

The mitigation effects of exogenous hydrogen peroxide when alleviating seed germination and seedling growth inhibition on salinity-induced stress in barley

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our study focused on the mitigation role of exogenously applied hydrogen peroxide (H₂O₂) in eliminating toxicty caused by salt (NaCl). Barley seeds were pretreated with 30 μM (micromolal) H₂O₂ for 24 hours and then exposed to increasing salt concentrations (0.0, 0.25, 0.275, 0.30 M). Morphogical and physiological changes in seed germination and seedling growth stages were compared between different treatments of salt in laboratory conditions. Adverse effects of salt during both germination and seedling growth stages were dependent on the concentration of the salt treatment. We found that the application of H₂O₂ effectively alleviated the salt-induced inhibition, and reduced the negative effects of salt on germination (germination index and vigor index), seedling growth stages (radicle and coleoptile lengths, fresh weight), and leaf parameters (stomata and epidermis counts, stomatal index, stomata sizes of adaxial and abaxial surfaces). The differences were statistically significant. Alleviating the effects of H₂O₂ increased in parallel with salt concentration (p≤0.05). However, under non-stress conditions (control), H₂O₂ didn’t have any effect on the investigated parameters (p≥0.05). Our results suggest that exogenous H₂O₂ application is involved in the resistance of barley to salt stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

3

Opis fizyczny

p.1053-1059,fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Arts and Science, Suleyman Demirel University, 32260, Isparta, Turkey
autor
  • Department of Biology, Faculty of Arts and Science, Suleyman Demirel University, 32260, Isparta, Turkey

Bibliografia

  • 1. RUIZ-LOZANO J.M., PORCEL R., AZCÓN C., AROCA R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J. Exp. Bot. 2012, doi:10.1093/jxb/ers126.
  • 2. HASANUZZAMAN M., NAHAR K., FUJITA M. Plant response to salt stress and role ofexogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress, Springer, New York, 25, 2013.
  • 3. FLOWERS T.J, YEO A.R. Breeding for salinity resistance in crop plants. Where next? Aust. J. Plant Physiol. 22, 875, 1995.
  • 4. GUPTA B., HUANG B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics. 2014, 18, 2014, doi: 10.1155/2014/701596.
  • 5. SAIRAM R.K., TYAGI A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86, 407, 2004.
  • 6. NAZAR R., IQBAL N., SYEED S., KHAN N.A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol. 168, 807, 2011.
  • 7. LU K.X., CAO B.H., FENG X.P., HE Y., JIANG D.A. Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica, 47, 381, 2009.
  • 8. ŚLESAK I., LIBIK M., KARPINSKA B., KARPINSKI S., MISZALSKI Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol. 54, 39, 2007.
  • 9. HERNANDEZ J.A., OLMAS E., CORPAS F.J., SEVILLA F., DEL RIO L.A. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151, 1995.
  • 10. DAT J., FOYER C., SCOTT I. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118, 1455, 1998.
  • 11. SHARMA P., JHA A.B., DUBEY R.S., PESSARAKLI M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, doi:10.1155/2012/217037.
  • 12. FAROOQ M., HUSSAIN M., WAKEEL A., SIDDIQUE K.H.M. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35, 461, 2015, doi: 10.1007/s13593-015-0287-0.
  • 13. GILL S.S., TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch. 48, 909, 2010.
  • 14. RHEE S.G., KANG S.W., JEONG W., CHANG T.S., YANG K.S., WOO H.A. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17, 183, 2005.
  • 15. BHATTACHARJEE S. The language of reactive oxygen species signaling in plants. J. Bot. 2012, 22, doi:10.1155/2012/985298.
  • 16. ŚLESAK I., LIBIK M., KARPINSKA B., KARPINSKI S., MISZALSKI Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol. 54, 39, 2007.
  • 17. DE AZEVEDO NETO A.D., PRISCO J.T., ENÉASFILHOB J., MEDEIROSB J-V.R., GOMES-FILHO E. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162, 11141122, 2005. doi:10.1016/j.jplph.2005.01.007.
  • 18. ASHRAF M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27 (1), 84, 2009.
  • 19. OGAWA K., IWABUCHI M. A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol. 42, 286, 2001.
  • 20. UCHIDA A., JAGENDORF A.T., HIBINO T., TAKABE T., TAKABE T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163, 515, 2002.
  • 21. WAHID A., NOREEN A., BASRA S.M.A., GELANI S., FAROQ M. Priming-induced metabolic changes in sunflower (Helianthus annuus) achenes improve germination and seedling growth. Botanical Stud. 49, 343, 2008.
  • 22. LI J-T., QIU Z-B., ZHANG X-W., WANG L-S. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol. Plant. 33, 835, 2011.
  • 23. AHMAD I., KHALIQ T., AHMAD A., BASRA S.M.A., HASNAIN Z., ALI A. Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. Afr. J. Biotechnol. 11, 1127, 2012.
  • 24. GONDIM F.A., GOMES-FILHO E., COSTA J.H., ALENCAR N.L.M., PRISCO J.T. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiol. Bioch. 56, 62, 2012.
  • 25. TAIZ L., ZEIGER E. Plant Physiology (4th ed.) Sinauer Assic, Sunderland, 2006.
  • 26. ANASTASOV H. Infl uence of oxyfl uorfen on some anatomic indices in the leaves of Virginia tobacco plant (Nicotiana tabacum L.). Biotechnol. Biotec. Eq. 24, 33, 2010, doi: 10.1080/13102818.2010.10817805.
  • 27. TIQUIA S.M. Reduction of compost phytotoxicity during the process of decomposition. Chemosphere, 79, 506, 2010.
  • 28. HANGARTER R.P. Gravity light and plant form. Plant Cell Environ. 20, 796, 1997.
  • 29. RENGIFO E., URICH R., HERRERA A. Water relations and leaf anatomy of the tropical species, Jatropha gossypifolia and Alternanthera crucis, grown under elevated CO2 concentration. Photosynthetica, 40, 397, 2002.
  • 30. CAHİLL J.F., MCNICKLE G.G. The behavioral ecology of nutrient foraging by plants. Ann. Rev. Ecol. Evol. Syst. 42, 289, 2011.
  • 31. BEWLEY J.D. Seed germination and dormancy. Plant Cell, 9, 1055, 1997.
  • 32. FREDJ M.B., ZHANI K., HANNACHI C., MEHWACHI T. Effect of NaCl priming on seed germination of four coriander cultivars (Coriandrum sativum). Eurasia J. Biosci. 7, 11, 2013.
  • 33. ASHRAF M., FOOLAD M.R. Pre-sowing seed treatment-a shotgun approach to improve germination growth and crop yield under saline and none-saline conditions. Adv. Agron. 88, 223, 2005, doi:10.1016/s0065-2113(05)88006-x.
  • 34. GOLDSWORTHY. Calcium and salinity. Appl. Biol. 4, 1, 1994.
  • 35. KILIC S., CAVUSOGLU K., KABAR K. Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. SDU J. Sci. 2, 41, 2007.
  • 36. KAYA C., TUNA A.L., OKANT A.M. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk. J. Agric. For. 34, 529, 2010, doi:10.3906/tar-0906-173.
  • 37. SHAHID M.A., BALAL R.M., PERVEZ M.A., GARCIASANCHEZ F., GIMENO V., ABBAS T., MATTSON N.S., RIAZ A. Treatment with 24-epibrassinolide mitigates NaClinduced toxicity by enhancing carbohydrate metabolism, osmolyte accu-mulation, and antioxidant activity in Pisum sativum L. Turk. J. Bot. 38, 511, 2014.
  • 38. LONG N.V., DOLSTRA O., MALOSETTI M., KILIAN B., GRANER A., VISSER R.G.F., VAN DER LINDEN C.G. Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor. Appl. Genet. 126, 2335, 2013.
  • 39. ADOLF V.I., JACOBSEN S-E., SHABALA S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ. Exp. Bot. 92, 43, 2013.
  • 40. DASH M., PANDA S.K. Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Biol. Plantarum, 44, 587, 2001.
  • 41. DASZKOWSKA-GOLEC A., SZAREJKO I. Open or close the gate stomata action under the control of phytohormones in drought stress conditions. Plant Sci. 4, 1, 2013.
  • 42. XU Z., ZHOU G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317, 2008.
  • 43. LEE G., CARROW R.N., DUNCAN R.R. Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci. 166, 1417, 2004.
  • 44. ZHAO S., CHEN W., MA D., ZHAO F. Influence of different salt level on stomatal character in rice leaves. Reclaiming and Rice Cultivation, 6, 26, 2006.
  • 45. GALME´S J., FLEXAS J., SAVE´ R., MEDRANO H. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil. 290, 139, 2007.
  • 46. MUNNS R. Physiological processes limiting growth in saline soils: some dogmas and hypotheses. Plant Cell Environ. 16, 15, 1993, doi: 10. 1111/j.1365-3040. 1993.tb00840. x.
  • 47. JAMIL M., REHMAN S., RHA E.S. Response of growth, PSII photochemistry and chlorophyll content to salt stress in four brassica species. Life Sci. J. 11, 139, 2014.
  • 48. ZHAO W., SUN Y., KJELGREN R., LIU X. Response of stomatal density and bound gas exchange in leaves of maize to soil water defi cit. Acta Physiol. Plant. 37, 1704, 2015, doi: 10.1007/s11738-014-1704-8.
  • 49. SPENCE R.D., WU H., SHARPE P.J.H., CLARK K.G. Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ. 9, 197, 1986.
  • 50. FAHN A. Some anatomical adaptations of desert plants. Phytomorphology, 14, 93, 1964.
  • 51. NAZ N., HAMEED M., ASHRAF M., AL-QURAINY F., ARSHAD M. Relationships between gas-exchange characteristics and stomatal structural modifi cations in some desert grasses under high salinity. Phosynthetica, 48, 446, 2010.
  • 52. SHI G.R., CAI Q.S. Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica, 46, 627, 2008.
  • 53. QU C., LIU C., GONG X., LI C., HONG M., WANG L.,HONG F. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environ. Exp. Bot. 75, 134, 2012, doi:10.1016/j. envexpbot.2011.08.019.
  • 54. SZALAI G., JANDA T. Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J. Agron. Crop. Sci. 195, 165, 2009, doi:10.1111/j.1439-037x.2008.00352.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-41e920b4-b4e9-4799-9420-1dceedb48444
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.