PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 79 | 1 |

Tytuł artykułu

Comparison of the ossification centre images between standard computed tomography and micro-computed tomography

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Based on standard computed tomography (CT) and micro-CT scan axis images, our study aims to analyse the incidence of variation of non-fusion ossification centre in the base of the odontoid and its anatomical structure characteristics, to compare ossification centre images and analyse the possible features of the ossification centre that can influence adult odontoid fractures. Materials and methods: Fifty cases were selected for standard cervical CT of the normal axis bone (second cervical) anatomy to calculate the incidence of variation of the non-fusion ossification centre in the base of the odontoid and the indexes of associated anatomical structure. In addition, five dry bone samples with the odontoid were chosen for micro-CT to analyse the clear anatomic structure of the trabecular bone in the ossification centre. Results: Incidence of variation of non-fusion ossification centre in the base of the odontoid was 28%. In the non-ossification group, the mean sagittal diameter of the base of odontoid (SDBO, mm) was 7.64 ± 1.29 mm, the mean transverse diameter of the base of odontoid (TDBO, mm) was 7.14 ± 1.55 mm, and the SDBO:TDBO ratio was 1.1 ± 0.22. In the ossification group, the mean SDBO was 7.7 ± 1.15 mm, the mean TDBO was 7.38 ± 1.32 mm, and the SDBO:TDBO ratio was 1.07 ± 0.21. There was no significant difference in the associated indexes between the ossification and non-ossification groups (p > 0.05). Micro-CT revealed the micro-structure of trabecular bone in the ossification centre and the close relationship between the trabecular bone and the odontoid. One existing non-ossification centre in the base of the odontoid was found in the five odontoid images. The trabecular bone indexes chosen in the target area of the ossification centre were weaker than those in other areas. Conclusions: The variation rate of the non-fusion ossification centre in the base of the odontoid is relatively high and may be an important factor in the aetiology of type II and III odontoid fractures. (Folia Morphol 2020; 79, 1: 141–147)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Numer

1

Opis fizyczny

p.141-147,fig.,ref.

Twórcy

autor
  • Department of Emergency, Inner Mongolia People’s Hospital, Hohhot, China
autor
  • Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
  • Human Anatomy Teaching and Research Section (Digital Medical Centre), Inner Mongolia Medical University Basic Medical College, Hohhot, China
autor
  • Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
autor
  • Department of Haematology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
autor
  • Human Anatomy Teaching and Research Section (Digital Medical Centre), Inner Mongolia Medical University Basic Medical College, Hohhot, China
autor
  • Human Anatomy Teaching and Research Section (Digital Medical Centre), Inner Mongolia Medical University Basic Medical College, Hohhot, China
autor
  • Department of Haematology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
autor
  • Medical Imaging Department, Inner Mongolia People’s Hospital, Hohhot, China
autor
  • Human Anatomy Teaching and Research Section (Digital Medical Centre), Inner Mongolia Medical University Basic Medical College, Hohhot, China
autor
  • Human Anatomy Teaching and Research Section (Digital Medical Centre), Inner Mongolia Medical University Basic Medical College, Hohhot, China

Bibliografia

  • 1. Anderson LD, D’Alonzo RT, Anderson LD, et al. Fractures of the odontoid process of the axis. J Bone Joint Surg Am. 1974; 56(8): 1663–1674, indexed in Pubmed: 4434035.
  • 2. Aydin K, Cokluk C. The segments and the inferior boundaries of the odontoid process of C2 based on the magnetic resonance imaging study. Turk Neurosurg. 2008; 18(1): 23–29, indexed in Pubmed: 18382973.
  • 3. Boutroy S, Bouxsein ML, Munoz F, et al. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005; 90(12): 6508–6515, doi: 10.1210/jc.2005-1258, indexed in Pubmed: 16189253.
  • 4. Cho EJ, Kim SH, Kim WH, et al. Clinical results of odontoid fractures according to a modified, treatment-oriented classification. Korean J Spine. 2017; 14(2): 44–49, doi: 10.14245/kjs.2017.14.2.44, indexed in Pubmed: 28704908.
  • 5. Colo D, Schlösser TPC, Oostenbroek HJ, et al. Complete remodeling after conservative treatment of a severely angulated odontoid fracture in a patient with osteogenesis imperfecta: a case report. Spine (Phila Pa 1976). 2015; 40(18): E1031–E1034, doi: 10.1097/BRS.0000000000000999, indexed in Pubmed: 26010035.
  • 6. Graham RS, Oberlander EK, Stewart JE, et al. Validation and use of a finite element model of C-2 for determination of stress and fracture patterns of anterior odontoid loads. J Neurosurg. 2000; 93(1 Suppl): 117–125, doi: 10.3171/spi.2000.93.1.0117, indexed in Pubmed: 10879767.
  • 7. Grauer JN, Shafi B, Hilibrand AS, et al. Proposal of a modified, treatment-oriented classification of odontoid fractures. Spine J. 2005; 5(2): 123–129, doi: 10.1016/j.spinee.2004.09.014, indexed in Pubmed: 15749611.
  • 8. Jagannathan J, Dumont AS, Prevedello DM, et al. Cervical spine injuries in pediatric athletes: mechanisms and management. Neurosurg Focus. 2006; 21(4): E6, doi: 10.3171/foc.2006.21.4.7, indexed in Pubmed: 17112196.
  • 9. Julien TP, Schoenfeld AJ, Barlow B, et al. Subchondral cysts of the atlantoaxial joint: a risk factor for odontoid fractures in the elderly. Spine J. 2009; 9(10): e1–e4, doi: 10.1016/j.spinee.2009.04.025, indexed in Pubmed: 19535297.
  • 10. Kandziora F, Chapman JR, Vaccaro AR, et al. Atlas fractures and atlas osteosynthesis: a comprehensive narrative review. J Orthop Trauma. 2017; 31 Suppl 4: S81–S89, doi: 10.1097/BOT.0000000000000942, indexed in Pubmed: 28816879.
  • 11. Kellinghaus M, Schulz R, Vieth V, et al. Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Legal Med. 2010; 124(2): 149–154, doi: 10.1007/s00414-009-0398-8, indexed in Pubmed: 20013127.
  • 12. Megan EG, Michael PK. Fractures of the axis: a review of pediatric, adult, and geriatric injuries. Curr Rev Musculoskelet Med. 2016; 9(4): 505–512, doi: 10.1007/s12178-016-9368-1, indexed in Pubmed: 27686572.
  • 13. Niemeier TE, Dyas AR, Manoharan SR, et al. Type III odontoid fractures: A subgroup analysis of complex, high-energy fractures treated with external immobilization. J Craniovertebr Junction Spine. 2018; 9(1): 63–67, doi: 10.4103/jcvjs.JCVJS_152_17, indexed in Pubmed: 29755239.
  • 14. O’Brien WT, Shen P, Lee P. The Dens: normal development, developmental variants and anomalies, and traumatic injuries. J Clin Imaging Sci. 2015; 5: 38, doi: 10.4103/2156-7514.159565, indexed in Pubmed: 26199787.
  • 15. Ouyang PR, He XJ, Cai X. [Classification of upper cervical fractures: a review]. Zhongguo Gu Shang. 2017; 30(9): 872–875, doi: 10.3969/j.issn.1003-0034.2017.09.018, indexed in Pubmed: 29455493.
  • 16. Perilli E, Parkinson IH, Reynolds KJ. Micro-CT examination of human bone: from biopsies towards the entire organ. Ann Ist Super Sanita. 2012; 48(1): 75–82, doi: 10.4415/ANN_12_01_13, indexed in Pubmed: 22456020.
  • 17. Peyrin F. Evaluation of bone scaffolds by micro-CT. Osteoporos Int. 2011; 22(6): 2043–2048, doi: 10.1007/s00198-011-1609-y, indexed in Pubmed: 21523402.
  • 18. Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011; 13: 531–552, doi: 10.1146/annurev-bioeng-071910-124717, indexed in Pubmed: 21756145.
  • 19. Ryan MD, Henderson JJ. The epidemiology of fractures and fracture-dislocations of the cervical spine. Injury. 1992; 23(1): 38–40, doi: 10.1016/0020-1383(92)90123-a, indexed in Pubmed: 1541497.
  • 20. Smith HE, Kerr SM, Fehlings MG, et al. Trends in epidemiology and management of type II odontoid fractures: 20-year experience at a model system spine injury tertiary referral center. J Spinal Disord Tech. 2010; 23(8): 501–505, doi: 10.1097/BSD.0b013e3181cc43c7, indexed in Pubmed: 20940632.
  • 21. Sung MJ, Kim KT, Hwang JH, et al. Safe Margin beyond Dens Tips to Ventral Dura in Anterior Odontoid Screw Fixation : Analysis of Three-Dimensional Computed Tomography Scan of Odontoid Process. J Korean Neurosurg Soc. 2018; 61(4): 503–508, doi: 10.3340/jkns.2018.0034, indexed in Pubmed: 29991109.
  • 22. Tang XM, Liu C, Huang K, et al. [Analysis of a three-dimensional finite element model of atlas and axis complex fracture]. Zhonghua Yi Xue Za Zhi. 2018; 98(19): 1484–1488, doi: 10.3760/cma.j.issn.0376-2491.2018.19.006, indexed in Pubmed: 29804415.
  • 23. Tassani S, Perilli E. On local micro-architecture analysis of trabecular bone in three dimensions. Int Orthop. 2013; 37(8): 1645–1646, doi: 10.1007/s00264-013-1989-z, indexed in Pubmed: 23835557.
  • 24. Watanabe M, Sakai D, Yamamoto Y, et al. Analysis of predisposing factors in elderly people with type II odontoid fracture. Spine J. 2014; 14(6): 861–866, doi: 10.1016/j.spinee.2013.07.434, indexed in Pubmed: 24055610.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-416d5238-1a3c-4b0c-8af2-fde1aaef7e58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.