PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 3 |

Tytuł artykułu

Tiapride prevents the aversive but not the rewarding effect induced by parabrachial electrical stimulation in a place preference task

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The parabrachial complex has been related to the processing of both rewarding and aversive signals. This pontine area is activated after the gastrointestinal administration of rewarding nutrients, in taste aversion learning, and in response to the reinforcing and aversive effects of some drugs of abuse. Electrical stimulation of this region can induce, in different animals, preference or aversion behaviors towards a place in a rectangular three‑chamber maze task. This study examined the effect of tiapride, a D2/D3 receptor antagonist, on the aversive or rewarding effects induced by electrical stimulation of the external lateral parabrachial subnucleus (NLPBe). As previously observed, administration of tiapride interrupted the aversive effect induced by NLPBe electrical stimulation. However, in contrast to the effects of dopamine antagonists on other rewarding systems, tiapride did not impair the place preference induced by NLPBe stimulation, an activation effect that is subject to tolerance. Tiapride administration also appeared to have no effect on the horizontal motor activity (crossings) of the electrically stimulated animals. We discuss the specific relevance of parabrachial reward with respect to other reinforcing brain components or systems, especially in relation to the preference effect of drugs of abuse, such as opiates, after dopamine antagonist administration.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

3

Opis fizyczny

p.236-243,fig.,ref.

Twórcy

autor
  • Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
autor
  • Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
autor
  • Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain

Bibliografia

  • Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28: 8821–8831.
  • Balaban CD, Thayer JF (2001) Neurological bases for balance‑anxiety links. J Anxiety Disord 15: 53–79.
  • Bechara A, Martin GM, Pridgar A, van der Kooy D (1993) The parabrachial nucleus: a  brain stem substrate critical for mediating the aversive motivational effects of morphine. Behav Neurosci 107: 147–160.
  • Benaliouad F, Kapur S, Rompré PP (2007) Blockade of 5‑HT2a receptors reduces haloperidol‑induced attenuation of reward. Neuropsychopharmacology 32: 551–561.
  • Bender S, Scherbaum N, Soyka M, Rüther E, Mann K, Gastpar M (2007) The efficacy of the dopamine D2/D3 antagonist tiapride in maintaining abstinence: a  randomized, double‑blind, placebo‑controlled trial in 299 alcohol‑dependent patients. Int J Neuropsychopharmacol 10: 653–660.
  • Bernard JF, Carroué J, Besson JM (1991) Efferent projections from the external parabrachial area to the forebrain: a  Phaseolus Vulgaris leucoagglutinin study in the rat. Neurosci Lett 122: 257–260.
  • Bernard JF, Huang GF, Besson JH (1994) The parabrachial area: Electrophysiological evidence for an involvement in visceral nociceptive processes. J Neurophysiol 71: 1646–1660.
  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28: 309–369.
  • Caillé S, Parsons LH (2003) SR141716A reduces the reinforcing properties of heroin but not heroin‑induced increases in nucleus accumbens dopamine in rats. Eu J Neurosci 18: 3145–3149.
  • Cannon CM, Bseikri MR (2004) Is dopamine required for natural reward? Physiol Behav 81: 741–748. Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci 23: 10827–10831.
  • Carter ME, Han S, Palmiter RD (2015) Parabrachial calcitonin gene‑related peptide neurons mediate conditioned taste aversion. J  Neurosci 35: 4582–4586.
  • Deslandes PN, Pache DM, Buckland P, Sewell RDE (2002) Morphine, cocaine and antidepressant induced motivational activity and midbrain dopaminergic neurotransmission. Eur J Pharmacol 453: 223–229.
  • Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits  M (2005) Calcitonin gene‑related peptide‑containing pathways in the rat forebrain. J Comp Neurol 89: 92–119.
  • Ettenberg A, White N (1981) Pimozide attenuates conditioned taste preferences induced by self‑stimulation in rats. Pharmacol Biochem Behav 15: 915–919.
  • Fenton HM, Liebman JM (1982) Self‑stimulation response decrement patterns differentiate clonidine, baclofen and dopamine antagonists from drugs causing performance deficit. Pharmacol Biochem Behav 17: 1207–1212.
  • Fenu S, Bassareo V, DiChiara G (2001) A role for dopamine D1 receptors of the nucleus accumbens shell in conditioned taste aversion learning. J Neurosci 21: 6897–6904.
  • Flagel SB, Clark JJ, Robinson TE, Mayo  L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H (2011) A selective role for dopamine in stimulus‑reward learning. Nature 469: 53–57.
  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the Parabrachial nucleus in the rat. Brain Res 7: 229–259.
  • García R, Simón MJ, Puerto A (2014) Rewarding effects of the electrical stimulation of the parabraquial complex: taste or place preference? Neurobiol Learn Mem 107: 101–107.
  • Garris PA, Kilpatrick M, Bunin MA, Michael C, Walker QD, Wightman RM (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self‑stimulation. Nature 398: 67–69.
  • Gauriau C, Bernard JF (2002) Pain pathways and parabrachial circuits in the rat. Exp Physiol 87: 251–258.
  • Hajnal A, Norgren R (2004) Taste pathways that mediate accumbens dopamine release by sapid sucrose. Physiol Behav 84: 363–369.
  • Hawkins RD, Roll PL, Puerto A, Yeomans JS (1983) Refractory periods of neurons mediating stimulation‑elicited eating and brain stimulation reward: interval scale measurement and tests of a  model of neural integration. Behav Neurosci 97: 416–432.
  • Hernández G, Shizgal P (2009) Dynamic changes in dopamine tone during self‑stimulation of the ventral tegmental area in rats. Behav Brain Res 198: 91–97.
  • Hnasko TS, Sotak BN, Palmiter RD (2005) Morphine reward in dopamine‑deficient mice. Nature 438: 854–857.
  • Hurtado MM, García R, Puerto A (2014) Tiapride impairs the aversive effect of electrical stimulation of the parabrachial complex in a conditioned place task. Acta Neurobiol Exp (Wars) 74: 307–316.
  • Hurtado MM, García R, Puerto A (2016) Tolerance to repeated rewarding electrical stimulation of the insular cortex. Brain Res 1630: 64–72.
  • Hurtado MM, Puerto A (2016) Tolerance to repeated rewarding electrical stimulation of the parabrachial complex. Behav Brain Res 312: 14–19.
  • Kirkpatrick MA, Fowler SC (1989) Force‑proportional reinforcement: pimozide does not reduce rats’ emission of higher forces for sweeter rewards. Pharmacol Biochem Behav 32: 499–504.
  • Koob GF, LeMoal M (2006) Neurobiology of Addiction. Academic Press, San Diego, CA. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13: 177–184.
  • Laviolette SR, Van der Kooy D (2003) Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 8: 50–59.
  • Laviolette SR, Nader K, Van der Kooy D (2002) Motivational state determines the functional role of the mesolimbic dopamine system in the mediation of opiate reward processes. Behav Brain Res 129: 17–29.
  • Le Foll B, Sokoloff P, Stark H, Goldberg R (2005) Dopamine D3 receptor ligands block nicotine‑induced conditioned place preferences through a mechanism that does not involve discriminative‑stimulus or antidepressant‑like effects. Neuropsychopharmacology 30: 720–730.
  • Ma YY, Meng  L, Guo CY, Han JS, Lee DY, Cui C (2009) Dose‑ and time‑dependent, context‑induced elevation of dopamine and its metabolites in the nucleus accumbens of morphine‑induced CPP rats. Behav Brain Res 204: 192–199.
  • Mackey WB, Van der Kooy D (1985) Neuroleptics blocks the positive reinforcing effects of amphetamine but not morphine as measured by place conditioning. Pharmacol Biochem Behav 22: 101–105.
  • Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid‑receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18: 22–29.
  • McFarland K, Ettenberg A (1999) Haloperidol does not attenuate conditioned place preferences or locomotor activation produced by food‑ or heroin‑predictive discriminative cues. Pharmacol Biochem Behav 62: 631–641.
  • Mediavilla C, Bernal A, Mahía J, Puerto A (2011) Nucleus of the solitary tract and flavour aversion learning: relevance in concurrent but not sequential behavioural test. Behav Brain Res 223: 287–292.
  • Mediavilla C, Mahía J, Bernal A, Puerto A (2012) The D(2)/D(3)‑receptor antagonist tiapride impairs concurrent but not sequential taste aversion learning. Brain Res Bull 87: 346–349
  • Mediavilla C, Molina F, Puerto A (2005) Concurrent conditioned taste aversion: A learning mechanism based on rapid neural versus flexible humoral processing of visceral noxious substances. Neurosci Biobehav Rev 29: 1107–1118.
  • Mediavilla C, Molina F, Puerto A (2000) The role of the lateral parabrachial nuclei in concurrent and sequential taste aversion learning in rats. Exp Brain Res 134: 497–505.
  • Nader K, van der Kooy D (1997) Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. J Neurosci 17: 383–390.
  • Nader K, Bechara A, van der Kooy D (1996) Lesions of the lateral parabrachial nucleus block the aversive motivational effects of both morphine and morphine withdrawal but spare morphine`s discriminative properties. Behav Neurosci 110: 1496–1502.
  • Nader K, Bechara A, Roberts DC, Van der Kooy D (1994) Neuroleptics block high‑ but not low‑dose heroin place preferences: further evidence for a two‑system model of motivation. Behav Neurosci 108: 1128–1138.
  • O`Doherty JO, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4: 95–102.
  • Olmstead MC, Franklin KBJ (1996) Differential effects of ventral striatal lesions on the conditioned place preference induced by morphine or amphetamine. Neuroscience 71: 701–708. Owesson‑White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM (2008) Dynamic changes in accumbens dopamine correlate with learning during intracranial self‑stimulation. PNAS 105: 11957–11962.
  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. Academy Press, San Diego, CA. Peciña S, Berridge KC, Parker LA (1997) Pimozide does not shift palatability: Separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol Biochem Behav 58: 801–811.
  • Phillips PE, Stuber GD, Helen MLAV, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422: 614–618.
  • Rezayof A, Zarrindast M, Sahraei H, Haeri‑Rohani A (2002) Involvement of dopamine D2 receptors of the central amygdala on the acquisition and expression of morphine‑induced place preference in rat. Pharmacol Biochem Behav 74: 187–197.
  • Rezayof A, Zarrindast  M, Sahraei H, Haeri‑Rohani A (2003) Involvement of dopamine receptors of the dorsal hippocampus on the acquisition and expression of morphine‑induced place preference in rats. J Psychopharmacol 17: 415–423.
  • Robinson S, Sandstrom SM, Denenberg VH, Palmiter RD (2005) Distinguishing whether dopamine regulates liking, wanting and/or learning about reward. Behav Neurosci 119: 5–15.
  • Roitman MF, Stuber GD, Phillips PE, Wightman PM, Carelli RM (2004) Dopamine operates as a  subsecond modulator of food seeking. J Neurosci 24: 1265–1271.
  • Roitman MF, Wheeler RA, Carelli RM (2005) Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45: 587–597.
  • Salamone JD (1994) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 61: 117–133.
  • Schachter SC (2004) Vagus nerve stimulation: mood and cognitive effects. Epilepsy Behav 5: 56–59.
  • Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1: 199–207. See RE, Kruzich PJ, Grimm JW (2001) Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a  rat model of relapse to cocaine‑seeking behaviour. Psychopharmacology 154: 301–310.
  • Simón MJ, García R, Puerto A (2011) Concurrent stimulation‑induced place preference in lateral hypothalamus and parabrachial complex: differential effects of naloxone. Behav Brain Res 225: 311–316.
  • Simón MJ, García R, Zafra MA, Molina F, Puerto A (2007) Learned preferences induced by electrical stimulation of a food‑related area of the parabrachial complex: effects of naloxone. Neurobiol Learn Mem 87: 332–342.
  • Simón MJ, Higuera‑Matas A, Roura‑Martinez D, Ucha‑Tortuero  M, Santos‑Toscano R, Garcia‑Lecumberri C, Ambrosio E, Puerto A (2016) Changes in D1 but not D2 dopamine or mu‑opioid receptor expression in limbic and motor structures after lateral hypothalamus electrical self‑stimulation: A quantitative autoradiographic study. Neurobiol Learn Mem 127: 17–26.
  • Simón MJ, Molina F, Puerto A (2009) Conditioned place preference but not rewarding self‑stimulation after electrical activation of the external lateral parabrachial nucleus. Behav Brain Res 205: 443–449.
  • Simón MJ, Zafra MA, Molina F, Puerto A (2008) Consistent rewarding or aversive effects of the electrical stimulation of the lateral parabrachial complex. Behav Brain Res 190: 67–73.
  • Smith JW, Fetsko LA, Xu R, Wang Y (2002) Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning. Neuroscience 113: 755–765.
  • Soyka M, Morhart‑Klute V, Horak M (2002) A combination of carbamazepine/ tiapride in outpatient alcohol detoxification. Results from an open clinical study. Eur Arch Psychiatry Clin Neurosci 252: 197–200.
  • Tehovnik EJ (1996) Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods 65: 1–17.
  • Vorel SR, Ashby CRJ, Paul M, Liu Xinhe, Hayes R, Hagan JJ, Middlemiss DN, Stemp G, Gardner EL (2002) Dopamine D3 receptor antagonism inhibits cocaine‑seeking and cocaine‑enhanced brain reward in rats. J Neurosci 22: 9595–9603.
  • Yamamoto T, Sawa K (2000a) C‑Fos‑like immunoreactivity in the brainstem following gastric loads of various chemical solutions in rats. Brain Res 866: 135–143.
  • Yamamoto T, Sawa K (2000b) Comparison of c‑fos‑like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in rats. Brain Res 866: 144–155.
  • Yamamoto T, Shimura T, Sakai N, Ozaki N (1994) Representation of hedonics and quality of taste stimuli in the parabrachial nucleus of the rat. Physiol Behav 56: 1197–1202.
  • Yeomans JS (1990) Principles of Brain Stimulation. Oxford University Press, New York. Zafra MA, Simón MJ, Molina F, Puerto A (2002) The role of the external lateral parabrachial subnucleus in flavor preferences induced by predigested food administered intragastrically. Brain Res 950: 155–164.
  • Zito KA, Bechara A, Greenwood C, Van Der Kooy D (1988) The dopamine innervation of the visceral cortex mediates the aversive effects of opiates. Pharmacol Biochem Behav 30: 693–699.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-40c13799-dbb7-45b3-be60-7bdb01b78c17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.