Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |
Tytuł artykułu

Groundwater chemistry in a meander bend of the polluted Biała Przemsza River

Warianty tytułu
Języki publikacji
Groundwater chemistry in alluvia was investigated in a meander bend of the Biała Przemsza River in its middle course at Sławków in Upper Silesia, southern Poland. Pollution of groundwater induced by inflow of river water enabled recognition of relative differences in the amount of inflowing water. Biogeochemical zonation is a characteristic feature of the investigated groundwater. Inflow of river water is most intensive in the zone of about 1/3 of the bend width, parallel to the channel. It is characterized by macroions concentrations higher than that in the river. Outside, in the central part of the bend, concentrations of macroions significantly decrease. In this part of the bend, the largest head gradient also is observed. It increases toward the apex, and close to the river channel it equals about 40 cm. Groundwaters in the distal part of the bend are the least mineralized as a result of dilution by rain water. Investigations suggest a slow exchange of the hyporheic waters because of the prevalence of sandy-silty sediments. It favours transformation of nitrates, sulphates, and iron mobility in reducing conditions. Reducing their load in the river can be remarkable over the 30 km meandering reach of this river.
Słowa kluczowe
Opis fizyczny
  • University of Science and Technology, Krakow, Poland
  • 1. KRAUSE S., HANNAH D.M., FLECKENSTEIN J.H., HEPPELL C.M., KAESER D., PICKUP R., PINAY G., ROBERTSON A.L., WOOD P.J. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4, 4819, 2011.
  • 2. BOULTON A.J., DATRY T., KASAHARA T., MUTZ M., STANFORD J.A., 390 Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. J. North Amer. Benthol. Soc., 29, 26, 2010.
  • 3. BOANO F.R., REVELLI L., RIDOLFI L. Bedform induced hyporheic exchange with 393 unsteady flow. Advances in Water Resources, 30, 148, 2007.
  • 4. MERILL L., TONJES D.J. A review of the hyporheic zone, stream restoration and means to enhance denitrification. Critical Reviews in Environmental Science and Technology, 44, 2337-2379, 2014.
  • 5. CARDENAS M.B. Stream-aquifer interactions and hyporheic exchange in gaining and 398 losing sinuous streams. Water Resources Research, 45, W06429, 2009.
  • 6. WOESSNER W.W. Stream and fluvial plain ground water interactions: rescaling 400 hydrogeologic thought, Ground Water, 38, 423, 2000.
  • 7. ALEKSANDER-KWATERCZAK U., CISZEWSKI D. Pollutants dispersal in groundwater and sediments of gaining and losing river reaches affected by metal 404 mining. Environmental Earth Sciences, 75, 95, 2016.
  • 8. REVELLI R., BOANO F., CAMPOREALE C., RIDOLFI L. Intra-meander hyporheic 406 flow in alluvial rivers, Water Resources Research, 44, W12428, 2008.
  • 9. KIEL B.A., CARDENAS M.B. Lateral hyporheic exchange throughout the 408 Mississippi River network. Nature Geoscience 7, 413-417, 2014.
  • 10. CISZEWSKI D. Hydrodynamiczne procesy rozpraszania osadów zanieczyszczonych metalami ciężkimi w korytach wybranych rzek Górnego Śląska. Prace Nauk UŚ 1805, Studia et Dissertationes, 23, 7, 2000.
  • 11. CISZEWSKI D., ALEKSANDER-KWATERCZAK U. Contrasting sediment and 413 water chemistry indicates the extent of the hyporheic zone in a polluted river system. Geology, Geophysics and Environment, 43, 151, 2016.
  • 12. CARUK M., DRUŻYŃSKA E., JARZĄBEK A. Wybrane aspekty jakości wód Białej 416 Przemszy. Środowisko, Czasopismo Techniczne, 106, 1, 2009.
  • 13. KALBUS E., REINSTORF F., SCHIRMER M. Measuring methods for groundwater418 surface water interactions: a review. Hydrology and Earth System Science, 10, 873, 2006.
  • 14. BOANO F., DEMARIA A., REVELLI R., RIDOLFI L. Biogeochemical zonation due to intrameander hyporheic flow. Water Resources Research, 46, W02511, 2010.
  • 15. GOMEZ J.D., WILSON J.L., CARDENAS M.B. Residence time distributions in 423 sinuosity-driven hyporheic zones and their biogeochemical effects. Water Resources Research, 48, W09533, 2012.
  • 16. CARDENAS M.M. The effect of bend morphology on flow and timescales of surface 426 water-groundwater exchange across pointbars. Journal of Hydrology, 362, 134, 2008.
  • 17. ZARNETSKE J.P., HAGGERTY R., WONDZELL S.M., BAKER M.A. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone, 430 Journal of Geophysical Research, 116, G01025, 2011.
  • 18. OSENBRÜCK K., WÖHLING T., LEMKE D., ROHRBACH N., SCHWIENTEK M., LEVEN C., ALVAREZ C.C., TAUBALD H., CIRPKA O.A. Assessing hyporheic exchange and associated travel times by hydraulic, chemical and isotopic monitoring at the Steinlach test Site, Germany. Environmental Earth Sciences, 69, 359, 2013.
  • 19. TRAUTH N., SCHMIDT CH., VIEWEG M., OSWALD SE., FLECKENSTEIN J.H. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions. Water 438 Resources Research, 51, 2243, 2015.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.