PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 2 |

Tytuł artykułu

Geographical and seasonal patterns of spleen mass and acarine load in tropical and subtropical leaf-nosed bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated intra-annual variability in acarine parasite load (species richness, prevalence and abundance) and spleen mass in populations of leaf-nosed bats in highly seasonal tropical and subtropical climates: one population of California leaf-nosed bat (Macrotus californicus) in a subtropical thorn forest, one population of Waterhouse's leaf-nosed bat (M. waterhousii) in a subtropical desert, and one population of Waterhouse's leaf-nosed bat in a tropical deciduous forest. We tested the hypothesis that hosts in highly seasonal tropical and subtropical climates exhibit significant seasonal changes in immune response and parasite load. Prevalence was 100% in most populations examined, except in the subtropical population of M. waterhousii in the rainy season. The tropical population had the highest parasite richness in both seasons and presented species belonging to the four acarine orders examined: Mesostigmata, Ixodidae, Trombidiformes, and Sarcoptiformes. Abundance values of Trombidiformes in M. californicus, and of Ixodida and Sarcoptiformes in the tropical M. waterhousii population were higher in the rainy than in the dry season. Spleen mass was larger in the tropical population in the rainy season and in the subtropical population in the dry season. Spleen mass was not related to abundance of any of the acarine orders (Mesostigmata, Ixodidae, Trombidiformes, and Sarcoptiformes) analyzed. Our findings suggest that bats in highly seasonal tropical and subtropical environments experience significant seasonal changes in parasite burden and in immune response.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.517-526,fig.,ref.

Twórcy

  • Estacion de Biologia Chamela, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, A.P.21, San Patricio, Jalisco, 48980 Mexico
  • Posgrado en Ciencias Biologicas, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, A.P.70-153, Mexico D.F., 04510 Mexico
  • UMDI, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro, Queretaro, 76230 Mexico
  • Departamento de Zoologia, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, A.P. 70-153, Mexico D.F., 04510 Mexico
  • Departamento de Biologia, Division de C.B.S., Unidad Iztapalapa, Universidad Autonoma Metropolitana, A.P. 55-535, Mexico D.F., 09340, Mexico
autor
  • Plant Sciences Department, Montana State University, 119 ABS Building, Bozeman, Montana 59717, USA

Bibliografia

  • 1. Arneberg, P., A. Skorping, B. Grenfell, and A. F. Read. 1998. Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London, 265B: 1283–1289. Google Scholar
  • 2. Avila-Flores, R., and R. A. Medellin. 2004. Ecological, taxonomic, and physiological correlates of cave use by Mexican bats. Journal of Mammalogy, 85: 675–687. Google Scholar
  • 3. Bell, G. P., G. A. Bartholomew, and K. A. Nagy. 1986. The roles of energetics, water economy, foraging behavior, and geothermal refugia in the distribution of the bat, Macrotus californicus. Journal of Comparative Physiology, 156: 441–450. Google Scholar
  • 4. Bize, P., C. Jeanneret, A. Klopfenstein, and A. Roulin. 2008. What makes a host profitable? Parasites balance host nutritive resources against immunity. The American Naturalist, 171: 107–118. Google Scholar
  • 5. Bochkov, A. V., and B. M. Oconnor. 2006. Hylomysobia gen. n. (Acari: Myobiidae), a new genus of mites parasitic on gymnures of the genus Hylomys (Eulipotyphla: Erinaceidae). Folia Parasitologica, 53: 302–310. Google Scholar
  • 6. Bordes, F., J. F. Guegan, and S. Morand. 2011. Micro parasite species richness in rodents is higher at lower latitudes and is associated with reduced litter size. Oikos, 120: 1889–1896. Google Scholar
  • 7. Bradshaw, G. V. R. 1961. A life history study of the California leaf-nosed bat, Macrotus californicus. Ph.D. Thesis. Univer sity of Arizona, Tucson, 89 pp. Google Scholar
  • 8. Brennan, J. M. 1967. New record of chigger from the West Indies. Studies on the Fauna of Curacao and other Caribbean Islands, 24: 147–156. Google Scholar
  • 9. Brennan, J. M., and M. L. Goff. 1977. Keys to the genera of chiggers the western hemisphere (Acarina: Trombiculidae). Journal of Parasitology, 63: 554–566. Google Scholar
  • 10. Brown, C. R., and M. B. Brown. 2002. Spleen volume varies with colony size and parasite load in a colonial bird. Proceedings of the Royal Society of London, 269B: 1367–1373. Google Scholar
  • 11. Christe, P., R. Arlettaz, and P. Vogel. 2000. Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters, 3: 207–212. Google Scholar
  • 12. Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp. 298–310, in Dynamics of populations ( P. J. Den Boer and G. R. Gradwell, eds.). Centre for Agricultural Publishing and Documentation, Wageningen, 611 pp. Google Scholar
  • 13. Corbin, E., J. Vicente, M. P. Martin-Hernando, P. Acevedo, L. Perez-Rodriguez, and C. Gortazar. 2008. Spleen mass as a measure of immune strength in mammals. Mammal Review, 38: 108–115. Google Scholar
  • 14. Dick, C. W., and B. D. Patterson. 2006. Bat flies: obligate ectoparasites of bats. Pp. 179–194, in Micromammals and macroparasites: from evolutionary ecology to management ( S. Morad, B. Krasnov, and R. Poulin, eds.). Springer- Verlag, Tokyo, 647 pp. Google Scholar
  • 15. Dittmar, K., C. W. Dick, B. D. Patterson, M. F. Whiting, and M. E. Gruwell. 2009. Pupal deposition and ecology of bat flies (Diptera: Streblidae): Trichobius sp. (caecus group) in a Mexican cave habitat. Journal of Parasitology, 95: 308–314. Google Scholar
  • 16. Dittmar, K., S. Morese, M. Gruwell, J. Mayberrry, and E. Diblasi. 2011. Spatial and temporal complexities of reproductive behavior and sex ratios: a case from parasitic insects. PLoS ONE, 6: e19438. Google Scholar
  • 17. Dusbabek, F., and F. S. Lukoschus. 1975. Parasitic mites of Surinam XXXIV Mites of the genus Eudusbabekia (Myobiidae: Trom bidiformes) of phyllostomid and desmodontid bats, with a key to know species. Acarologia, 17: 306–319. Google Scholar
  • 18. Fain, A. 1973. Les listrophorides en Amerique neotropicale (Acarina: Sarcoptiformes): I. Familles Listrophodidae et Chiro discidae. Bulletin de l'Institut Royaldes Sciences Naturellesde Belgique, 49: 1–149. Google Scholar
  • 19. Fain, A., M. Nadchatram, and F. S. Lukoschus. 1984. Fur mites of the family Myobiidae (Acari: Prostigmata) parasitic on bats in peninsular Malaysia. Malayan Nature Journal, 37: 175–183. Google Scholar
  • 20. Fernandez-Llario, P., A. Parra, R. Cerrato, and J. Hermoso De Mendoza. 2004. Spleen size variations and reproduction in a Mediterranean population of wild boar (Sus scrofa). European Journal of Wildlife Research, 50: 13–17. Google Scholar
  • 21. Gouy De Bellocq, J., A. Porcherie, C. Moulia, and S. Morand. 2007. Immunocompetence does not correlate with resistance to helminth parasites in house mouse subspecies and their hybrids. Parasitology Research, 100: 321–328. Google Scholar
  • 22. Guerrero, R. 1992. Catalogo de los Labidocarpidae (Acarina, Listrophoroidea) parasitos de los murcielagos (Mammalia Chiroptera) neotropicales. Studies on Neotropical Fauna and Environment, 27: 19–41. Google Scholar
  • 23. Hadidi, S., G. W. Glenney, T. J. Welch, J. T. Silverstein, and G. D. Wiens. 2008. Spleen size predicts resistance of rainbow trout to Flavobacterium psychrophilum challenge. Journal of Immunology, 180: 4156–4165. Google Scholar
  • 24. Hoffmann, A. 1990. Los trombiculidos de Mexico. Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Mexico, 275 pp. Google Scholar
  • 25. Hornok, S., R. Kovacs, M. L. Meli, E. Gonczi, R. Hofmannlehmann, J. Kontschan, M. Gyuranecz, A. Dan, and V. Molnar. 2012. First detection of bartonellae in a broad range of bat ectoparasites. Veterinary Microbiology, 159: 541–543. Google Scholar
  • 26. IUCN. 2016. The IUCN Red List of Threatened Species. Version 2016-1. Available at www.iucnredlist.org. Downloaded on 11 August 2016. Google Scholar
  • 27. Izdebska, J. N., and M. Krawczyk. 2012. Skin mites of mammals - the occurrence, significance and research prospects in Poland. Pp. 123–131, in Arthropods. The medical and economic importance ( A. Buczek and C. Błaszak, eds.). Akapit, Lublin, Poland, 367 pp. Google Scholar
  • 28. Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist, 104: 501–528. Google Scholar
  • 29. John, J. L. 1994. The avian spleen: a neglected organ. Quarterly Review of Biology, 69: 327–351. Google Scholar
  • 30. Kohls, G. M., D. E. Sonenshine, and C. M. Clifford. 1965. The systematics of Subfamily Ornithodorinae (Acarina: Argasidae). II. Identification of the larvae of the Western hemisphere and descriptions of three new species. Annals of the Entomological Society of America, 58: 331–364. Google Scholar
  • 31. Kohls, G. M., C. M. Clifford, and E. K. Jones. 1968. The systematics of Subfamily Ornithodorinae (Acarina: Argasidae). IV. Eight new species of Ornithodoros from the Western hemisphere. Annals of the Entomological Society of America, 62: 1035–1043. Google Scholar
  • 32. Lalli, P. N., M. S. Morgan, and L. G. Arlian. 2004. Skewed Th1/Th2 immune response to Sarcoptes scabi. Journal of Parasitology, 90: 711–714. Google Scholar
  • 33. Leary, S., W. Underwood, R. Anthony, S. Cartner, D. Corey, T. Grandin, C. B. Greenacre, S. Gwaltney-Bran, M. A. McCrackin, R. Meyer , et al. 2013. AVMA guide - lines for the euthanasia of animals: 2013 edition, 102 pp. Google Scholar
  • 34. Lefebvre, F., B. Mounaix, G. Poizat, and A. J. Crivelli. 2004. Impacts of the swimbladder nematode Anguillicola crassus on Anguilla anguilla: variations in liver and spleen masses. Journal of Fish Biology, 64: 435–447. Google Scholar
  • 35. Lerdthusnee, K. N. Khlaimanee, T. Monkanna, N. Sangjun, S. Mungviriya, K. J. Linthicum, S. P. Frances, T. M. Kollars, Jr. , and R. E. Coleman. 2002. Efficiency of Leptotrombidium chiggers (Acari: Trombiculidae) at transmitting Orientia tsutsugamushi to laboratory mice. Journal of Medical Entomology, 39: 521–525. Google Scholar
  • 36. Lidicker, J. Z., Jr. , and W. H. Davis. 1955. Changes in splenic weight associated with hibernation in bats. Experimental Biology and Medicine, 89: 640–642. Google Scholar
  • 37. Lopez Gonzalez, C., and D. F. Garcia Mendoza. 2006. Murcielagos de la Sierra Tarahumara, Chihuahua, Mexico. Acta Zoologica Mexicana, 22: 109–135. Google Scholar
  • 38. Lourenco, E. C., P. M. P. Patricio, and K. M. Famadas. 2016. Community components of spinturnicid mites (Acari: Meso stigmata) parasitizing bats (Chiroptera) in the Tingua Biological Reserve of Atlantic Forest of Brazil. Interna tion al Journal of Acarology, 42: 63–69. Google Scholar
  • 39. Martin, L. B., II , M. I. Pless, J. Svoboda, and M. Wikelski. 2004. Immune activity in temperate and tropical house spar rows: a common garden experiment. Ecology, 85: 2323–2331. Google Scholar
  • 40. Martin, L. B., II , M. I. Pless, and M. Wikelski. 2007. Greater seasonal variation in blood and ectoparasite infections in a temperate than a tropical population of house sparrows Passer domesticus in North America. Ibis, 149: 419–423. Google Scholar
  • 41. Medellin, R. A., H. T. Arita, and O. Sanchez. 2008. Identificacion de los murcielagos de Mexico, clave de campo. Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Comision Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico, 89 pp. Google Scholar
  • 42. Moller, A. P. 1998. Evidence of a larger impact of parasites on hosts in the tropics: investment in immune function within and outside the tropics. Oikos, 82: 265–270. Google Scholar
  • 43. Moller, A. P., and J. Erritzoe. 2000. Coevolution of host immune defence and parasite-induced mortality: relative spleen size and mortality in altricial birds. Oikos, 99: 95–100. Google Scholar
  • 44. Morales-Malacara, J. B. 1998. Acaros mesostigmata parasitos de murcielagos de Mexico. Ph.D. Thesis, Universidad Nacional Autonoma de Mexico, Mexico, 299 pp. Google Scholar
  • 45. Morales-Malacara, J. B., and J. Juste. 2002. Two new species of the genus Periglischrus (Acari: Mesostigmata: Spintur nicidae) on two bat species of the genus Tonatia (Chiroptera: Phyllostomidae) from Southeastern Mexico, with additional data from Panama. Journal of Medical Entomology, 39: 298–311. Google Scholar
  • 46. Morand, S., and R. Poulin. 2000. Nematode parasite species richness and the evolution of spleen size in birds. Canadian Journal of Zoology, 78: 1356–1360. Google Scholar
  • 47. Moya-Larano, J. 2010. Can temperature and water availability contribute to the maintenance of latitudinal diversity by increasing the rate of biotic interactions? Open Ecology Journal, 3: 1–13. Google Scholar
  • 48. Moyer, B. R., D. M. Drown, and D. H. Clayton. 2002. Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos, 97: 223–228. Google Scholar
  • 49. Murphy, P. G, and A. E. Lugo. 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17: 67–88. Google Scholar
  • 50. O'farrell, M. J., and E. H. Studier. 1973. Reproduction, growth, and development in Myotis thysanodes and M. lucifugus (Chiroptera: Vespertilionidae). Ecology, 54: 18–30. Google Scholar
  • 51. O'hara, R. B., and D. J. Kotze. 2010. Do not logtransform count data. Methods in Ecology and Evolution, 1: 118–122. Google Scholar
  • 52. Pearce, R. D., and T. J. O'Shea. 2007. Ectoparasites in an urban population of big brown bats (Eptesicus fuscus) in Colorado. Journal of Parasitology, 93: 518–530. Google Scholar
  • 53. Postawa, T., A. Szubert-Kruszyńska, and H. Ferenc. 2014. Differences between populations of Spinturnix myoti (Acari: Mesostigmata) in breeding and non-breeding colonies of Myotis myotis (Chiroptera) in central Europe: the effect of roost type. Folia Parasitologica, 61: 581–588. Google Scholar
  • 54. Radovsky, F. J. 1967. The Macronyssidae and Laelapidae (Acarina: Mesostigmata) parasitic on bats. University of California Publications in Entomology, 46: 1–288. Google Scholar
  • 55. Reeves, W. K., A. P. G. Dowling, and G. A. Dasch. 2006. Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Experimental and Applied Acarology, 38: 181–188. Google Scholar
  • 56. Rosza, L. 1997. Patterns in the abundance of avian lice (Phthiraptera: Amblycera, Ischnocera). Journal of Avian Biology, 28: 249–254. Google Scholar
  • 57. Rudnick, A. 1960. A revision of the mites of the family Spinturnicidae (Acarina). University of California Publications in Entomology, 17: 157–283. Google Scholar
  • 58. Rzedowski, J. 1988. Vegetacion de Mexico. Limusa, Mexico, 432 pp. Google Scholar
  • 59. Salkeld, D. J., M. Trivedi, and L. Schwarzkopf. 2008. Parasite loads are higher in the tropics: temperate to tropical variation in a single host-parasite system. Ecography, 31: 538–544. Google Scholar
  • 60. Santibanez, P., A. M. Palomar, A. Portillo, S. Santibanez, and J. A. Oteo. 2015. The Role of chiggers as human pathogens. Pp. 173–202, in An overview of tropical diseases ( A. Samie, ed.). I-Tech Education and Publishing, Vienna, Austria, 210 pp. Google Scholar
  • 61. SAS Institute Inc. 2008. JMP version 8. Cary, NC: SAS Institute Inc. Google Scholar
  • 62. Scantlebury, M., M. M. Mcwilliams, N. J. Marks, J. T. A. Dick, H. Edgar, and H. Lutermann. 2010. Effects of lifehistory traits on parasite load in grey squirrels. Journal of Zoology (London), 282: 246–255. Google Scholar
  • 63. Schemske, D. W., G. G. Mittelbach, H. V. Cornell, J. M. Sobel, and K. Roy. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution and Systematics, 40: 245–269. Google Scholar
  • 64. Schulte-Hostedde, A. I, and S. C. Elsasser. 2011. Spleen mass, body condition, and parasite load in male American mink (Neovison vison). Journal of Mammalogy, 92: 221–226. Google Scholar
  • 65. Šebela, S., and J. Turk. 2011. Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theoretical Applied Climatology, 105: 371–386. Google Scholar
  • 66. Sheeler-Gordon, L. L., and R. D. Owen. 1999. Host tracking or resource tracking? The case of Periglischrus wing mites (Acarina: Spinturnicidae) of leaf-nosed bats (Chiroptera: Phyllostomidae) form Michoacan, Mexico. Acta Zoologica Mexicana (N.S.), 76: 85–102. Google Scholar
  • 67. Shutler, D., R. T. Alisauskas, and J. D. Mclaughlin. 1999. Mass dynamics of the spleen and other organs in geese: measures of immune relationships to helminths? Canadian Journal of Zoology, 77: 351–359. Google Scholar
  • 68. Smith, K. G., and J. L. Hunt. 2004. On the use of spleen mass as a measure of avian immune system strength. Oecologia, 138: 28–31. Google Scholar
  • 69. Smithson, P. A. 1991. Inter-relationships between cave and outside temperatures. Theoretical Applied Climatology, 44: 65–73. Google Scholar
  • 70. Socolovschi, C., T. Kernif, D. Raoult, and P. Parola. 2012. Borrelia, Rickettsia, and Ehrlichia species in bat ticks, France, 2010. Emerging Infectious Diseases, 18: 1966–1975. Google Scholar
  • 71. Sparagano, O. A. E., M. T. E. P. Allsopp, R. A., Mank, S. G. T. Rijpkema, J. V., Figueroa, and F. Jongejan. 1999. Molecular detection of pathogen DNA in ticks (Acari: Ixo didae): a review. Experimental and Applied Acarology, 23: 929–960. Google Scholar
  • 72. Stoner, K. E. 2005. Phyllostomid bat community structure and abundance in two contrasting tropical dry forest. Biotropica, 37: 591–599. Google Scholar
  • 73. Taylor, M. L., C. B. Chavez-Tapia, and M. R. Reyes-Montes. 2000. Molecular typing of Histoplasma capsulatum isolated from infected bats, captured in Mexico. Fungal Genetics and Biology, 30: 207–212. Google Scholar
  • 74. Torres-Flores, J. W., R. Lopez-Wilchis, and A. Sotoca -Struita. 2012. Dinamica poblacional, seleccion de sitios de percha y patrones reproductivos de algunos murcielagos cavernicolas en el oeste de Mexico. Revista de Biologia Tropical, 60: 1369–1389. Google Scholar
  • 75. Tuttle, M., and D. E. Stevenson. 1977. Variation in the cave environment and its biological implications. Pp. 108–121, in National Cave Management Symposium Proceedings ( R. Zuber, J. Chester, S. Gilbert, and D. Rhodes, eds.). Adobe Press, Albuquerque, 140 pp. Google Scholar
  • 76. Vercammen-Grandjean, P. H. 1967. Revision of the genus Tecomatlana Hoffmann, 1947 (Acarina: Trombiculidae). Acarologia, 9: 848–864. Google Scholar
  • 77. Vercammen-Grandjean, P. H., S. G. Watkins, and A. J. Beck. 1965. Revision of Whartonia glenni Brannan, 1962, an Amer ican bat parasite (Acarina: Leeuwenhoekiidae). Acarologia, 7: 493–509. Google Scholar
  • 78. Wenzel, R. L. 1976. The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin (Biology Series), 20: 1–177. Google Scholar
  • 79. Wenzel, R. L., V. J. Tipton, and A. Kiewlicz. 1966. The streblid batflies of Panama (Diptera: Calypterae: Streblidae). Pp. 405–675, in Ectoparasites of Panama ( R. L. Wenzel and V. J. Tipton, eds.). Field Museum of Natural History, Chicago, 824 pp. Google Scholar
  • 80. Wibbelt, G., M. S. Moore, T. Schountz, and C. C. Voigt 2006. Emerging diseases in Chiroptera: why bats? Biology Letters, 6: 438–440. Google Scholar
  • 81. Wiens, G. D., R. L. Vallejo, T. D. Leeds, Y. Palti, S. Hadidi, S. Liu, J. P. Evenhuis, T. J. Welch, and C. E. Rexroad III . 2013. Assessment of genetic correlation between bacterial cold water disease resistance and spleen index in a domesticated population of rainbow trout: identification of QTL on chromosome Omy19. PLoS ONE, 8: e75749. Google Scholar
  • 82. Wolda, H. 1978. Seasonal fluctuations in rainfall, food and abundance of tropicalinsects. Journal of Animal Ecology, 47: 369–381. Google Scholar
  • 83. Zhang, L., S. Parsons, P. Daszak, L. Wei, G. Zhu, and S. Zhang. 2010. Variation in the abundance of ectoparasitic mites of flat-headed bats. Journal of Mammalogy, 91: 136–143. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-3fd6d7d5-c552-4199-bd3b-8f9b5e6d7cf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.