PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 2 |

Tytuł artykułu

The concept of an energy self-sufficient farm system compatible with sustainable development in a selected region in Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper analyses the real quantity of organic waste in the Polish province of Warmia and Mazury to determine the degree of farm energy self-suffi ciency. Systems engineering methods were used in the performance of the study. A relational and mathematical model was constructed to estimate the energy potential of waste biomass in the selected area. This model is the basis for conducting detailed studies, whose results are presented in the content of the paper. The constructed model allows the determination of such parameters as: • The value of the energy potential of organic waste generated by farms in the selected area. • The value of the technical (real) energy potential of organic waste from farms using specifi c technologies. • The type of waste with the highest energy potential. Our paper defi nes the concept of the degree of primary energy substitution with renewable energy from agricultural organic waste and presents a methodology for determining the degree of covering the real demand of farms for electrical energy and heat. A statistical model for estimating the unit energy potential of organic waste from a given farm per 1 ha of area was also developed. This model allowed the total energy potential of organic waste from agriculture to be determined for the studied area. In the studied province, the total energy potential of organic waste from agriculture amounts to 16.74 PJ·yr-1. Although this study shows that the energy potential contained in organic waste from agriculture is signifi cantly large, it is disregarded by farmers and decision-makers. Focusing on the production of energy crops in order to satisfy the demand for energy biomass distorts the image that emerges from our studies: the level of renewable energy generated only from organic waste makes the idea of energy self-suffi ciency of farms appear plausible. We considered only those groups of waste that cannot be used in agriculture. The use of the energy potential of organic waste will permit a signifi cantly high reduction of primary CO2 environmental emissions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

2

Opis fizyczny

p.529-544,fig.,ref.

Twórcy

  • Department of Electrical and Power Engineering, Electronics and Automatics, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 11 Oczapowskiego St, 10-736 Olsztyn, Poland
autor
  • Department of Electrical and Power Engineering, Electronics and Automatics, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 11 Oczapowskiego St, 10-736 Olsztyn, Poland

Bibliografia

  • 1. DEMIRBAS A.H., DEMIRBAS I. Importance of rural bioenergy for developing countries. Energ. Convers. Manage., 48, 2386, 2007.
  • 2. McKENDRY P. Energy production from biomass (part 1): Overview of biomass (Review). Bioresource Technol. 83 (1), 37, 2002.
  • 3. ADAMS E. E. Fossil fuel use pushes carbon dioxide emissions into dangerous territory [Internet] 2013. [cited 2013 Nov 20]. Available from: http://www.earth-policy.org/ indicators/C52/carbon_emissions_2013
  • 4. IPCC. Climate change 2001: impacts, adaptation and vulnerability. Report ofthe working group II. UK: Cambridge University Press p. 967, 2001.
  • 5. IPCC. Climate change 2007: impacts, adaptation and vulnerability. Summary for policymakers and technical summary, WG II contribution to the AR4. UK: Cambridge University Press p. 93, 2007.
  • 6. MONTAGNINI F., NAIR P.K.R. Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agroforest. Syst. 61, 281, 2004.
  • 7. GREENE C.H., PERSHING A.J. Climate-driven sea change. Science 315, 1084, 2007.
  • 8. PRATHER M., EHHALT D., DENTENER F., DERWENT R., DLUGOKENCKY E., et al. Atmospheric chemistry and greenhouse gases. In: HOUGHTON J. T., DING Y., GRIGGS D.J., NOGUER M., VAN DER LINDEN P.J., et al., editors. Climate change 2001: the scientific basis. Cambridge University Press 239, 2001.
  • 9. HALL D.O., ROSILLO C.F., WILLIAMS R.H., WOODS J. Biomass for energy: supply prospects. In: JOHANSSON B.J., KELLY H., REDDY A.K.N., WILLIAM R.H., editors. Renewable energy: sources for fuels and electricity. Washington, DC: Island Press; 1993.
  • 10. DHILLON R.S., VON WUEHLISCH G. Mitigation of global warming through renewable biomass. Biomass Bioenerg. 48, 75, 2013.
  • 11. ZAMORANO M., POPOV V., RODRÍGUEZ M.L., GARCÍA-MARAVER A. A comparative study of quality properties of pelletized agricultural and forestry logging residues. Renew. Energ. 36 (11), 3133, 2011.
  • 12. MONFORTI F., BÓDIS K., SCARLAT N., DALLEMAND J.F. The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renew. Sust. Energ. Rev. 19, 666, 2013.
  • 13. Biofuel production technologies: status, prospects and implications for trade and development. United Nations Conference on Trade and Development, New York and Geneva, 1, 2008.
  • 14. CARRIQUIRY M., DU X., TIMILSINA G. Second-generation biofuels: Economics and policies. The Word Bank Development Research Group Environment and Energy Team, 1, 2010.
  • 15. EISENTRAUT A. Sustainable production of second-generation biofuels potential and perspectives in major economies and developing countries. IEA, 1, 2010.
  • 16. SEARCHINGER T., HEIMLICH R. Avoiding Bioenergy Competition for Food Crops and Land. Working Paper, Installment 9 of Creating a Sustainable Food Future. Washington, DC: World Resources Institute, 2015.
  • 17. BENTSEN N.S., FELBY C., THORSEN B.J. Agricultural residue production and potentials for energy and materials services. Prog. Energ. Combust. Sci. 40, 59, 2014.
  • 18. DOORNBOSCH R., STEENBLIK R. Biofuels: is the cure worse than the disease? Revista Virtual REDESMA 2 (2), 2008.
  • 19. HABERL H., BERINGER T., BHATTACHARYA S.C., ERB K.-H., HOOGWIJK M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sustain. 2, 394, 2010.
  • 20. HOOGWIJK M., FAAIJ A., VAN DEN BROEK R., BERNDES G., GIELEN D., TURKENBURG W. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenerg. 25, 119, 2003.
  • 21. SMEETS E., FAAIJ A., LEWANDOWSKI I., TURKENBURG W. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energ. Combust. Sci. 33, 56, 2007.
  • 22. BIERANOWSKI J., OLKOWSKI T. Concept for substitution of primary energy by renewable energy obtained from waste biomass in a selected agricultural farm. Agric. Eng. 7 (95), 23, 2007 [in Polish].
  • 23. KIMBALL B.A., KOBAYASHI K., BINDI M. Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron. 77, 293, 2002.
  • 24. ROOT T.L., PRICE J.T., HALL K.R., SCHNEIDER S.H., ROSENZWEIG C., POUNDS J.A. Fingerprints of global warming on wild animals and plants. Nature 421, 57, 2003.
  • 25. RODHE L.K.K., ABUBAKER J., ASCUE J., PELL M., NORDBERG A. Greenhouse gas emissions from pig slurry during storage and after field application in northern European conditions. Biosystems Eng. 113 (4), 379, 2012.
  • 26. VINTERBÄCK J. Pellets 2002: The first world conference on pellets. Biomass Bioenerg. 27, 513, 2004.
  • 27. ŻUK D., RODE H. A concept of an agricultural bio-waste processing system in the Oporów Commune. II International Scientific and Technology Conference "Recycling Problems" SGGW, PW, Rogów 20-21 November 2002 [In Polish].
  • 28. LIPSKI R., ORLIŃSKI S., TOKARSKI M. Energy utilization of biomass based on a straw-heated boiler-room in Frombork. Motorization and Power Industry in Agriculture 8A, 202, 2006 [In Polish].
  • 29. SOŁOWIEJ P. Qualitative and quantitative analysis of waste from agricultural farm on the example of a community. Agric. Eng. 1 (61), 155, 2005 [In Polish].
  • 30. ERICSSON K., NILSSON L.J. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenerg. 30, 1, 2006.
  • 31. SCARLAT N., MARTINOV M., DALLEMAND J.F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manage. 30 (10), 1889, 2010.
  • 32. PANOUTSOU C., ELEFTHERIADIS J., NIKOLAOU A. Biomass supply in EU27 from 2010 to 2030. Energ. Policy 37, 5675, 2009.
  • 33. PASKA J., SAŁEK M., SURMA T. Current status and perspectives of renewable energy sources in Poland. Renew. Sust. Energ. Rev. 13, 142, 2009.
  • 34. IGLIŃSKI B., BUCZKOWSKI R., IGLIŃSKA A., CICHOSZ M., PIECHOTA G., KUJAWSKI W. Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renew. Sust. Energ. Rev. 16, 4890, 2012.
  • 35. ANGELIDAKI I., ELLEGAARD L. Codigestion of manure and organic wastes in centralized biogas plants. Appl. Biochem. Biotech. 109, 95, 2003.
  • 36. DACH J., ZBYTEK Z., PILARSKI K., ADAMSKI M. Research on waste usage efficiency from biofuel production as a substrate in a biogas plant. Agric. Hortic. For Eng. 6, 5, 2009 [In Polish].
  • 37. ZHENG Y.H., LI Z.F., FENG S.F., LUCAS M., WU G.L., LI Y., LI C.H., JIANG G.M. Biomass energy utilization in rural areas may contribute to alleviating the energy crisis and global warming: A case study in a typical agro-village of Shandong, China. Renew. Sust. Energ. Rev. 14, 3132, 2010.
  • 38. KOCAMAN I., KONUKCU F., OZTURK G. Meaures to protect environmental problems ceused by animalwastes in rural sttelment areas: A case study from Western Turkey. J. Anim. Vet. Adv. 10 (12), 1536, 2011.
  • 39. GŁASZCZKA A., WARDAL W.J., ROMANIUK W., DOMASIEWICZ T. Agro-biogas plants. MULTICO Publishing Board, Warsaw; 2010 [in Polish].
  • 40. DE WIT M., FAAIJ A. European biomass resource potential and costs. Biomass Bioenerg. 34, 188, 2010.
  • 41. PABIS S. Methodology and methods of empirical sciences. PWN. Warsaw; 1985 [In Polish].
  • 42. BIERANOWSKI J., PIECHOCKI J. Eco-energy program of the province of Warmia and Mazury for 2005-2010. Issued by the Marshal's Office of the province of Warmia and Mazury, Olsztyn, 2005 [In Polish].
  • 43. CEMPEL C. Systems theory, systems engineering -principles and applications of system thinking [Internet]. 2008. [cited 2013 Dec 5]. Available from: http://neur.am.put. poznan.pl.e-scripts
  • 44. BLANCHARD B.S., FABRYCKY W.J. Systems Engineering and Analysis. New York: Prentice Hall; 1990.
  • 45. WAELCHLI F. Eleven Theses of General System Theory (GST). Syst. Res. 4 (9), 3, 1992.
  • 46. WINIWARTER P., CEMPEL C. Life Symptoms - the Behavior of Open Systems with Limited Energy Dissipation Capacity and Evolution, Syst. Res. 4 (3), 9, 1992.
  • 47. BIERANOWSKI J. Model of a maintenance system for selected machinery in the food processing industry. Agric. Eng. 1 (43), 9, 2003 [In Polish].
  • 48. BIERANOWSKI J., KLONOWSKI A. The model of an associated energy source in the food processing industry. Agric. Eng. 6 (66), 33, 2005 [In Polish].
  • 49. BARTON R.F. A Primer on Simulation and Gaming. New Jersey: Prentice Hall; 1970.
  • 50. PABIS S. Methodological basis of IT system modelling. IV National symposium on exploitation of technical equipment. T.2., PPT, Katowice; 1977 [in Polish].
  • 51. JAŹWIŃSKI J., PABIS S., WIEREMIEJCZYK W. Technical system simulation principles. Simulation testing methods for reliability of technical systems. 1. Materials for "Winter school -75" Jaszowiec; 1975 [In Polish].
  • 52. Statistical Office in Olsztyn. Warminsko-mazurskie voivodship in figures 2013 [Internet]. Olsztyn; 2013. [cited 2013 Dec 4]. Available from: http://www.stat.gov.pl/cps/rde/ xbcr/olsz/ASSETS_Warm_mazur_w_liczbach_2013.pdf
  • 53. Google Maps [Internet]. 2013. (access 27.10.2013). [cited 2013 Oct 27]. Available from: https://maps. google.pl/maps?q=wojew%C3%B3dztwo+warm i%C5%84sko-mazurskie&ie=UTF-8&hq=&hnea r=0x46e20d3eacc5ae17:0x1020e32ad0ec0f0,wa rmi%C5%84sko-mazurskie&gl=pl&ei=QEptUo-nrPIK3hAeUjIGAAg&ved=0CHsQtgM
  • 54. Statistical Office in Olsztyn. Characteristics of agricultural farms in the province of Warmia and Mazury. Agricultural census 2010 [Internet]. Olsztyn; 2012. [in Polish] [cited 2013 Dec 4]. Available from: http://www.stat.gov.pl/cps/rde/ xbcr/olsz/ASSETS_charakterystyka_PSR_2010.pdf
  • 55. KUKUŁA K. Research on the agrarian structure in Poland in spatial grasp. Acta Scientiarum Polonorum, seria Oeconomia 6 (4), 19, 2007 [in Polish].
  • 56. PASZKOWSKI S. The impact of acreage and spatial differentiation of the farms on economic activity and incomes from farming in Poland. Acta Scientiarum Polonorum, seria Oeconomia 6 (2), 97, 2007 [In Polish].
  • 57. PIĘTA P. Farmers' pensions as an instrument of agrarian structure changes in Poland. Acta Scientiarum Polonorum, seria Oeconomia 6 (4), 39, 2007 [in Polish].
  • 58. IGNATCZYK W., CHROMIŃSKA M. Statistics. Theory and application. Editing Board of the Higher Banking School. Poznań, 2004 [In Polish].
  • 59. STANISZ A. Straightforward course in statistics based on STATISTICA PL based on medical examples. StatSoft Polska, Kraków, 2001 [In Polish].
  • 60. SHANNON R. E. Systems simulation. New Jersey: Prentice Hall; 1975.
  • 61. BIERANOWSKI J. Selection criteria of functional assemblies in the construction aspects of a tetra-pack machine abstract model. Agric. Eng. 1 (61), 33, 2005. [In Polish]
  • 62. PILCH T., BAUMAN T. Pedagogic research principles. Quantitative and qualitative strategies, 2nd ed.; "Żak" Academic Publishing Board: Warsaw, 2001 [In Polish].
  • 63. ŁOBOCKI M. Methods and techniques of pedagogic research. "IMPULS" Publishing Board: Kraków, 2003 [in Polish]
  • 64. ZACZYŃSKI W. Teacher's research work, 5th ed.; Warsaw, 1997 [In Polish].
  • 65. MASZKE A. W. Methods and techniques of pedagogic research. Publishing Board of the Rzeszów University: Rzeszów, 2008. [In Polish].
  • 66. DEMIDOWICZ G., DEPUTAT T., GÓRSKI T., ZALIWSKI A., WRÓBLEWSKA E. Numerical map of length of vegetation period. IUNG Puławy 1998.
  • 67. Central Statistical Office of Poland. Prices of agricultural products - January - December 2005.
  • 68. Central Statistical Office of Poland. Prices of agricultural products - January - December 2006.
  • 69. Central Statistical Office of Poland. Prices of agricultural products - January - December 2007.
  • 70. Central Statistical Office of Poland. Prices of agricultural products - January - December 2008.
  • 71. Central Statistical Office of Poland. Prices of agricultural products - January - December 2009.
  • 72. Central Statistical Office of Poland. Prices of agricultural products - January - December 2010.
  • 73. NILSSON L.J., PISAREK M., BURIAK J., ONISZK-POPŁAWSKA A., BUĆKO P., ERICSSON K., JAWORSKI Ł. Energy policy and the role of bioenergy in Poland. Energ. Policy 34, 2263, 2006.
  • 74. BIERANOWSKI J., OLKOWSKI T. Comparison of combustion gas emission by low power boilers fired by biomass obtained from wood - pellets. Tech. Sci. 12, 9, 2009.
  • 75. KARPENSTEIN-MACHAN M. Sustainable cultivation concepts for domestic energy production from biomass. Crit. Rev. Plant. Sci. 20 (1), 1, 2001.
  • 76. GAWĘCKI J., WAGNER W. Methodological bases of experimental research in nutritional and food sciences . PWN Warszawa - Poznań, 1984 [In Polish].
  • 77. PRZESTALSKI S. Elements of physics, biophysics and agriphysics. Publishing Board of Wrocław University: Wrocław, 2001 [In Polish].
  • 78. Statistical Office in Olsztyn. Characteristics of agricultural farms in the province of Warmia and Mazury. Agricultural census 2010 [Internet]. Olsztyn, 2012. [In Polish] [cited 2013 Dec 4]. Available from: http://www.stat.gov.pl/cps/rde/ xbcr/olsz/ASSETS_charakterystyka_PSR_2010.pdf
  • 79. KUBICA K. Biomass combustion and co-combustion with coal - techniques, benefits and barriers [Internet]. Institute for Chemical Processing of Coal: Zabrze 2004. [In Polish]. [cited 2015 Apr 21]. Available from: http://conbiot.ichpw. zabrze.pl/25_Spalanie_biomasy_i_jej_wspo3spalanie_z_ weglem.pdf

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3fbc8625-4591-43cb-b7f0-ffdf2b6ab8e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.