PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 45 | 2 |
Tytuł artykułu

Gill raker counting for approximating the ratio of river- and sea-spawning whitefish, Coregonus lavaretus (Actinopterygii: Salmoniformes: Salmonidae) in the Gulf of Bothnia, Baltic Sea

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background. The ability to distinguish between stocks in mixed fisheries is a prerequisite for a sustainable fisheries management. In the Gulf of Bothnia the relative contribution of endangered river-spawning and sea-spawning whitefish, Coregonus lavaretus (Linnaeus, 1758), to fisheries catches are currently not well known. This also applies to the southern Åland Islands, a major feeding ground for river-spawning whitefish from northern rivers. River- and sea-spawning whitefish are mixed while away from the breeding grounds and off the spawning season, and cannot be distinguished based on external features. Materials and Methods. Analysis on gill raker numbers of river-spawning (n = 480) and sea-spawning (n = 456) whitefish from twelve locations at the Finnish west coast and the Åland Islands was performed. In whitefish sampled from feeding grounds at the Åland Islands the strontium concentration was analysed in otoliths from fish (n = 20) with low (27) and high (30) number of gill rakers. Results. A marked difference in the mean gill raker number of the river- and sea-spawning whitefish stocks was observed. The weighted mean of gill rakers of whitefish caught at spawning locations showed that the number of gill rakers of fish from rivers and the sea were 29.9 ± 2.14 (n = 480) and 26.7 ± 2.21 (n = 456), respectively. The difference between the two groups was highly significant (t = 22.50, df = 934, P < 0.0001). The means differed by 3.20 (2.92–3.48, 95% CL) indicating the groups are well separated. In whitefish sampled at feeding grounds at the Åland Islands, otolith strontium concentration was higher (t = 2.09, df = 18, P = 0.04) in fish having 27 gill rakers (3.86 ± 0.30 mg · g–1, n = 10), compared to those having 30 gill rakers (3.54 ± 0.35 mg · g–1, n = 10). Otolith strontium analysis thereby supported the utility of gill raker counting data for estimating the proportion of river- and sea-spawning whitefish in mixed populations. As expected, the gill raker counting method successfully indicated temporal alterations in the proportions of river- and sea-spawning whitefish on feeding grounds. Conclusion. Gill raker counting is an easy, fast, and inexpensive method that can be used to estimate the spatiotemporal occurrence and migratory patterns of river- and sea-spawning whitefish at the southern feeding grounds in the Gulf of Bothnia, and thereby aid in a sustainable management of whitefish stocks.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
45
Numer
2
Opis fizyczny
p.125-131,fig.,ref.
Twórcy
  • Laboratory of Aquatic Pathobiology and Husö Biological Station, Environmental and Marine Biology, Faculty of Science and Engineering, Abo Akademi University, Abo, Finland
  • Laboratory of Aquatic Pathobiology and Husö Biological Station, Environmental and Marine Biology, Faculty of Science and Engineering, Abo Akademi University, Abo, Finland
autor
  • Department of Biology, University of Turku, Turku, Finland
  • Department of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
  • Accelerator Laboratory, Turku PET Centre, Abo Akademi University, Abo, Finland
autor
  • Laboratory of Aquatic Pathobiology and Husö Biological Station, Environmental and Marine Biology, Faculty of Science and Engineering, Abo Akademi University, Abo, Finland
autor
  • Accelerator Laboratory, Turku PET Centre, Abo Akademi University, Abo, Finland
  • Laboratory of Aquatic Pathobiology and Husö Biological Station, Environmental and Marine Biology, Faculty of Science and Engineering, Abo Akademi University, Abo, Finland
Bibliografia
  • Amundsen P.-A., Bøhn T., Våga G.H. 2004. Gill raker morphology and feeding ecology of two sympatric morphs of European whitefi sh (Coregonus lavaretus).Annales Zoologici Fennici 41 (1): 291–300.
  • Anonymous 2010. Ecosystem health of the Baltic Sea 2003–2007. HELCOM initial holistic assessment. Balic Sea Environment Proceedings. No. 122. HELCOM.
  • Anonymous 2013. Coregonus albula; species information sheet. In: HELCOM http://www.helcom.fi
  • Bernatchez L., Renaut S., Whiteley A.R., Derome N.,Jeukens J., Landry L., Lu G., Nolte A.W., Østbye K., Rogers S.M., St-Cyr J. 2010. On the origin of species: Insights from the ecological genomics of lake whitefi sh. Philosophical Transactions of the Royal Society B 365: 1783–1800. DOI: 10.1098/rstb.2009.0274
  • Campana S.E. 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297.DOI: 10.3354/meps188263
  • Dahr E. 1947. Biologiska studier över siken, Coregonus lavaretus Linné, vid mellansvenska Östersjökusten.[Biological studies of the whitefi sh, Coregonus lavaretus Linné, at the middle Swedish Baltic Sea coast.] Meddelanden from Statens undersöknings- och försöksanstalt för sötvattensfi sket, Kungliga Lantbruksstyrelsen 28: 1–79. [In Swedish.]
  • Doubleday Z.A., Izzo C., Woodcock S.H., Gillanders B.M. 2013. Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquatic Biology 18 (3): 271–280.DOI: 10.3354/ab00511
  • Elsdon T.S., Wells B.K., Campana S.E., Gillanders B.M., Jones C.M., Limburg K.E., Secor D.H.,Thorrold S.R., Walther B.D. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Pp. 297–330. In: Gibson R.N., Atkinson R.J.A.,Gordon J.D.M. (eds.) Oceanography and Marine Biology:An Annual Review Vol. 46.DOI: 10.1201/9781420065756.ch7.
  • Engstedt O., Koch-Schmidt P., Larsson P. 2012. Strontium (Sr) uptake from water and food in otoliths of juvenile pike (Esox lucius L.). Journal of Experimental Marine Biology and Ecology 418–419: 69–74.DOI: 10.1016/j.jembe.2012.03.007
  • Engstedt O., Stenroth P., Larsson P., Ljunggren L.,Elfman M. 2010. Assessment of natal origin of pike (Esox lucius) in the Baltic Sea using Sr:Ca in otoliths. Environmental Biology of Fishes 89 (3–4): 547–555. DOI: 10.1007/s10641-010-9686-x
  • Himberg M. 1970. A systematic and zoogeographical study of some north European coregonids. Pp. 219–250. In: Lindsey C., Woods C. (eds.) Biology of coregonid fishes. Manitoba University Press, Winnipeg, MB, Canada.
  • Himberg M. 1978. Sikarna i vårt havsområde. [The whitefish in our sea area.] Åbo Akademi-Ålands landskapsstyrelse. Husö Biologiska Stadion Meddelanden 2: 2–3. [In Swedish.]
  • Himberg M. 1995. Sikens biologi och lekplatser i Skärgårds och Bottenhavet. [Whitefish biology and spawning locations in the Archipelago Sea and Gulf of Bothnia.] Kala- ja riistahallinnon julkaisuja 16: 2–21.[In Swedish.]
  • Hudd R., Veneranta L., Vanhatalo J. 2013. Havslekande sikens och siklöjans yngelproduktionsområden. [The reproduction areas of sea-spawning whitefi sh and vendace.] Vilt- och fi skeriforskningsinstitutes arbetsrapporter, 7: 1–38. [In Swedish.]
  • Huusko O., Grotnes P. 1988. Population dynamics of the anadromous whitefi sh, Coregonus lavaretus (L.), of the river Kiiminkijoki, Finland. Finnish Fisheries Research 9: 245–254.
  • Jokikokko E., Huhmarniemi A., Leskelä A., Vähä V. 2012. Migration to the sea of river spawning whitefish (Coregonus lavaretus L.) fry in the northern Balic Sea. Advances in Limnology 63: 117–125.DOI: 10.1127/advlim/63/2012/117
  • Järvi T.H. 1928. Über die Arten und Formen der Coregonen s. str. in Finland. Acta Zoologica Fennica 5: 1–259.
  • Kirpichnikov V.S. 1981. Genetic Bases of Fish Selection.Springer-Verlag, Berlin–Heidelberg–New York.
  • Lehtonen H. 1981. Biology and stock assessments of coregonoids by the Baltic coast of Finland. Finnish Fisheries Research 3: 31–83.
  • Lehtonen H., Böhling P. 1988. Management of the whitefish (Coregonus lavaretus L. s.l. fi shery in the Gulf of Bothnia. Finnish Fisheries Research 9: 373–387.
  • Lehtonen H., Himberg M. 1979. Sikbestånd och sikfångster vid våra kuster. [Whitefi sh stocks and catches at our coasts.] Fiskeritidskrift för Finland 23 (4): 68–72. [In Swedish.]
  • Lehtonen H., Himberg M. 1992. Baltic Sea migration patterns of anadromous, Coregonus lavaretus (L.) s.str., and sea-spawning European whitefi sh, C.l. widegreniMalmgren. Polish Archives of Hydrobiology 39 (3–4): 463–472.
  • Leskelä A., Jokikokko E., Huhmarniemi A. 2009.Perämeren vaellussiikaistutusten tulokset. [Results from the stocking of river-spawning whitefish in the Gulf of Bothnia.] Riista- ja kalatalouden tutkimuslaitos, Helsinki No. 7. [In Finnish.]
  • Lind E.A., Kaukoranta E. 1974. Characteristics, population structure and migration of the whitefi sh, Coregonus lavaretus (L.) in the Oulujoki River. Ichthyologia Fennica Borealis 4: 160–217.
  • Lindroth A. 1957. A study of the whitefi sh (Coregonus) of the Sundsvall Bay district. Institute of Freshwater Research, Drottningholm: Report No. 38: 70–108.
  • Macdonald J.I., Crook D.A. 2010. Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Marine Ecology Progress Series 413: 147–161.DOI: 10.3354/meps08703
  • Nikolsky G.V. 1963. The ecology of fi shes. Academic Press, London, UK.
  • Ozerov M.Y., Himberg M., Aykanat T., Sendek D.S., Hägerstrand H., Verliin A., Krause T., Olsson J., Primmer C.R., Vasemägi A. 2015. Generation of a neutral FST baseline for testing local adaptation on gill raker number within and between European whitefish ecotypes in the Baltic Sea basin. Journal of Evolutionary Biology 28 (5): 1170–1183.DOI: 10.1111/jeb.12645
  • Secor D.H., Rooker J.R. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research 46 (1–3): 359–371.DOI: 10.1016/S0165-7836(00)00159-4
  • Siwertsson A., Knudsen R., Amundsen P.-A. 2012.Temporal stability in gill raker numbers of subarctic European whitefi sh populations. Advances in Limnology 63: 229–240.DOI: 10.1127/advlim/63/2012/229
  • Svärdson G. 1957. The coregonid problem. VI. The palearctic species and their intergrades. Institute of Freshwater Research Drottningholm: Report No. 38: 267–356.
  • Valtonen T. 1970. The selected temperature of Coregonus nasus (Pallas), sensu Svärdson, in natural waters compared with some other fi sh. Pp. 346–362. In: Lindley C., Woods C. (eds.) Biology of coregonid fishes. Manitoba University Press, Winnipeg, MB, Canada.
  • Vanhatalo J., Veneranta L., Hudd R. 2012. Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae. Ecological Modelling 228: 49–58.DOI: 10.1016/j.ecolmodel.2011.12.025
  • Veneranta L., Hudd R., Vanhatalo J. 2013. Reproduction areas of sea-spawning coregonids reflect the environment in shallow coastal waters. Marine Ecology Progress Series 477: 231–250.DOI: 10.3354/meps10169
  • Verliin A., Kotta J., Orav-Kotta H., Saks L., Vetemaa M. 2011. Food selection of Coregonus lavaretus in a brackish water ecosystem. Journal of Fish Biology 78 (2): 540–551.DOI: 10.1111/j.1095-8649.2010.02870.x
  • Wikgren B.-J. 1962. Resultaten av sikmärkningar Inom Åland och vid Luvia. [Results from whitefish tagging at the Åland Islands and Luvia.] Åbo Akademi-Ålands landskapsstyrelse. Husö Biologiska Station Meddelanden 3: 1–26. [In Swedish.]
  • Zimmerman C.E. 2005. Relationship of otolith strontium-to-calcium ratios and salinity: Experimental validation for juvenile salmonids. Canadian Journal of Fisheries and Aquatic Sciences 62 (1): 88–97.DOI: 10.1139/F04-182
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3e02eee5-5633-4f59-8842-f9faa85820b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.