PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 20 |

Tytuł artykułu

Biochemical changes in the muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum) disinfected by chloramine-T

Treść / Zawartość

Warianty tytułu

PL
Zmiany biochemiczne w tkance mięśniowej pstrąga tęczowego (Oncorhynchus mykiss Walbaum) po kąpielach dezynfekujących z chloraminą-T

Języki publikacji

EN

Abstrakty

EN
Chloramine-T is a widely used disinfectant for the treatment of gill diseases of fish in freshwater, and more recently attention has turned to its use in seawater. However, despite the wide use of chloramine-T, few studies have examined its toxicity to fish. Therefore, the aim of the current study was to examine the effects of disinfection by Chloramine-T on the muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum) using oxidative stress biomarkers (levels of 2-thiobarbituric acid reactive substances and derivatives of oxidatively modified proteins) and biochemical enzymes’ activity (alanine- and aspartate aminotransferases (ALT and AST), lactate dehydrogenase (LDH)) to observe the its toxic effects. The endpoints obtained from this study will be useful to monitor the effects of disinfectant bathing with Chloramine-T for this species of fish. In the disinfectant group, rainbow trout (n = 11) were exposed to Chloramine-T in final concentration of 9 mg per L. Control group of trout (n = 11) was handled with water from basin in the same way as Chloramine-T exposed group. Fish were bathed with Chloramine-T for 20 min and repeated three times every 3 days. Two days after the last bathing fish were sampled to study. Our results showed that Chloramine-T bathing caused the decrease of the lipid peroxidation as well as ALT and AST activity and significant decrease of LDH activity (by 339%, p = 0.017) compared to controls. Chloramine-T markedly affects on lactate and pyruvate metabolism and resulted to decrease of LDH activity. Correlative analysis revealed that the lipid peroxidation level is correlated with ALT and AST activity in the muscle tissue of unhandled control group. In the muscle tissue of trout disinfected by Chloramine-T, LDH activity is correlated positively with ALT and AST activity. Thus, the skeletal muscles of fish play an important role in the processing of lactate through the gluconeogenic and glycogenic pathways including a greater potential for biosynthesis. Our studies indicated that Chloramine-T in dose of 9 mg per L could at least partly attenuate oxidative stress and can be used for prophylactic disinfecting treatment of rainbow trout. Oxidative stress and biochemical alterations could be effectively used as potential biomarkers of Chloramine-T toxicity to the fish in the warning signal for pharmaceutical exposure to aquatic organisms. However, more detailed studies on using of these specific biomarkers to monitor the disinfectant treatment in aquaculture are needed.
PL
Chloramina-T jest szeroko stosowanym środkiem dezynfekcyjnym i terapeutycznym do leczenia chorób skrzeli ryb w wodach słodkich i morskich. Jednak pomimo szerokiego stosowania tego środka, tylko w niewielu badaniach analizowano jego toksyczność dla ryb (Powell i Harris 2004). W związku z tym celem pracy było zbadanie wpływu dezynfektanta chloraminy-T na tkankę mięśniową pstrąga tęczowego (Oncorhynchus mykiss Walbaum) z wykorzystaniem biomarkerów stresu oksydacyjnego (poziom produktów reagujących z kwasem 2-tiobarbiturowym, aldehydowe i ketonowe pochodne oksydacyjnej modyfikacji białek) oraz przemian metabolicznych (aktywność aminotransferaz alaninowej i asparaginianowej, dehydrogenazy mleczanowej, stężenie mleczanu i pirogronianu). Uzyskane wyniki końcowe będą przydatne do monitorowania skutków dezynfekujących kąpieli z chloraminą-T dla tego gatunku ryb. Nasze wyniki wskazują, że chloramina-T znacznie obniża peroksydację lipidów na tle zmniejszenia aktywności aminotransferaz alaninowej i asparaginianowej oraz dehydrogenazy mleczanowej. Ponadto obniżona aktywność dehydrogenazy mleczanowej spowodowała zmniejszenie aktywności aminotransferaz. Zatem mięśnie szkieletowe ryb odgrywają ważną rolę w obróbce mleczanu przez glukoneogenezę i glikogenezę. Chloramina-T w dawce 9 mg na litr może przynajmniej częściowo złagodzić stres oksydacyjny w tkance mięśniowej pstrąga tęczowego i może być stosowana do dezynfekcji tego gatunku ryb. Konieczne są jednak bardziej szczegółowe badania dotyczące korzystania z tych specyficznych biomarkerów do monitorowania dezynfekcji w akwakulturze.

Wydawca

-

Rocznik

Tom

20

Opis fizyczny

p.101-116,fig.,ref.

Twórcy

autor
  • Department of Zoology and Animal Physiology, Institute of Biology and Environmental Protection, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
  • Department of Salmonid Research, Stanislaw Sakowicz Inland Fisheries Institute, 83-330 Zukowo, Poland

Bibliografia

  • Banaee M., 2013. Physiological Dysfunction in Fish After Insecticides Exposure. In: Insecticides – Development of Safer and More Effective Technologies. Chapter 4. (Ed. S. Trdan), InTech, http://dx.doi.org/10.5772/54742, 103-143.
  • Banaee M., Sureda A., Mirvaghef A.R., Ahmadi K., 2011. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchusmykiss). Pesticide Biochem. Physiol., 99, 1-6.
  • Bills T.D., Marking L.L. , Dawson V.K., Howe G.E., 1988a. Effects of organic matter and loading rates of fish on the toxicity of chloramine-T. Investigations in Fish Control Report 97. U.S. Fish and Wildlife Service. Available from the Publications Unit, U.S. Fish and Wildlife Service, Springfield, Virginia.
  • Bills T.D., Marking L.L., Dawson V.K., Rach J.J., 1988b. Effects of environmental factors on the toxicity of Chloramine-T to fish. Investigations in Fish Control Report 96. U.S. Fish and Wildlife Service. Available from the Publications Unit, U.S. Fish and Wildlife Service, Springfield, Virginia.
  • Bills T.D., Marking L.L., Howe G.E., 1993. Sensitivity of juvenile striped bass to chemicals used in aquaculture. U.S. Fish and Wildlife Service Technical Report Series 192. Available from the Publications Unit, U.S. Fish and Wildlife Service, Springfield, Virginia.
  • Bootsma R., 1973. Infections with Saprolegnia in pike culture (Esoxlucius L.). Aquacult., 2, 385-394.
  • Boran H., Altinok I., 2014. Impacts of Chloramine-T treatment on antioxidant enzyme activities and genotoxicity in rainbow trout, Oncorhynchusmykiss (Walbaum). J. Fish Dis., 37(5), 431-441.
  • Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254.
  • Burka J.F., Hammell K.L., Horsberg T.E., Johnson G.R., Rainnie D.J., Speare D.J., 1997. Drugs in salmonid aquaculture – a review. J. Vet. Pharmacol. Ther., 20(5), 333-349.
  • Cross D.G., Hursey P.A., 1973. Chloramine-T for the control of Ichthyophthiriusmultifiliis (Fouquet). J. Fish Biol., 5, 789-798.
  • Environmental Assessment of the Effects of Chloramine-T Use in and Discharge by Freshwater Aquaculture. 2007. Prepared by L.J. Schmidt, M.P. Gaikowski, W.H. Gingerich, G.R. Stehly, W.J. Larson, V.K. Dawson, and T.M. Schreier. Submitted to U.S. Food and Drug Administration Center for Veterinary Medicine Director, Division of Therapeutic Drugs for Food Animals Office of New Animal Drug Evaluation 7500 Standish Place Rockville, Maryland 20855,
  • Gleeson T.T., 1996. Post-exercise lactate metabolism: a comparative review of sites, pathways, and regulation. Ann. Rev. Physiol., 58, 565-581.
  • Harris J.O., Powell M.D., Attard M., Green T.J., 2004. Efficacy of Chloramine-T as a treatment for amoebic gill disease (AGD) in marine Atlantic salmon (Salmosalar L.). Aquac. Res., 35, 1448-1456.
  • Harris J.O., Powell M.D., Attard M.G., DeHayr L., 2005. Clinical assessment of Chloramine-T and freshwater as treatments for the control of gill amoebae in Atlantic salmon, Salmosalar L. Aquac. Res., 36, 776-784.
  • Kamyshnikov V.S., 2004. Spravochnik po kliniko-biochimicheskim issledovaniyam i laboratornoy diagnostike. Reference book on clinic and biochemical researches and laboratory diagnostics), MEDpress-inform, Moskva, (in Russian).
  • Leef M.J., Harris J.O., Powell M.D., 2007. Metabolic effects of amoebic gill disease (AGD) and Chloramine-T exposure in seawater-acclimated Atlantic salmon Salmosalar. Dis. Aquat. Organ., 78(1), 37-44.
  • Machado M.W., 1983. Chloramine-T – the toxicity to fathead minnow Pimephalespromelas during an early life-stage exposure, FIFRA guideline number 72-4. Final Report SLI 93-9-4927 submitted by Springborn Laboratories, Inc. to AKZO Chemicals International, The Netherlands.
  • Moon T.W., 1988. Adaptation, constraint, and the function of the gluconeogenic pathway. Can. J. Zool., 66, 1059-1068.
  • Oost R. van der, Beyer J., Vermeulen N.P., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13(2), 57-149.
  • Pellmar T.C., Neel K.L., 1989. Oxidative damage in the guinea pig hippocampal slice. Free Radic. Biol. Med., 6(5), 467-472.
  • Powell M.D., Clark G.A., 2003. In vitro survival and the effect of water chemistry and oxidative chemical treatments on isolated gill amoebae from AGD affected Atlantic salmon. Aquaculture, 220, 135-144.
  • Powell M.D., Perry S.F., 1996. Respiratory and acid-base disturbances in rainbow trout (Oncorhynchusmykiss) blood during exposure to chloramine T, paratoluenesulphonamide, and hypochlorite. Can. J. Fish Aquat. Sci., 53, 701-708.
  • Powell M.D., Perry S.F., 1997. Respiratory and acid-base disturbances in rainbow trout blood during exposure to Chloramine-T under hypoxia and hyperoxia. J. Fish Biol., 50, 418-428.
  • Powell M.D., Perry S.F., 1999. Cardio-respiratory effects of Chloramine-T exposure in rainbow trout. Exp. Biol., Online 4, 5.
  • Powell M.D., Wright G.M., Speare D.J., 1995. Morphological changes in rainbow trout (Oncorhynchusmykiss) gill epithelia following repeated intermittent exposure to chloramine-T. Can. J. Zool., 73(1), 154-165.
  • Reitman S., Frankel S., 1957. A colorimetric method for determination of serum oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28, 56-63.
  • Sakuma S., Miyoshi E., Sadatoku N., Fujita J., Negoro M., Arakawa Y., Fujimoto Y., 2009. Monochloramine produces reactive oxygen species in liver by converting xanthine dehydrogenase into xanthine oxidase. Toxicol. Appl. Pharmacol., 239(3), 268-272.
  • Sanchez J.G., Speare D.J., Johnson G.J., Horney B.S., 1997. Evaluation of the stress response in healthy juvenile rainbow trout after repetitive intermittent treatment with Chloramine-T or formalin. J. Aquat. Anim. Health, 9(4), 301-308.
  • Sanchez J.G., Speare D.J., MacNair N., Johnson G.R., 1996. Effects of a prophylactic Chloramine-T treatment on growth performance and condition indices of rainbow trout. J. Aquat. Anim. Health, 8(4), 278-284.
  • Sanchez J.G., Speare D.J., Sims D.E., Johnson G.J., 1998. Morphometric assessment of epidermal and mucous-biofilm changes caused by exposure of trout to Chloramine-T or formalin treatment. J. Comp. Pathol., 118(1), 81-87.
  • Sevela M., Tovarek J., 1959. A method for estimation of lactic dehydrogenase in body liquids. J. Czech Physiol., 98, 844-848.
  • Shoubridge E.A., Hochachka P.W., 1980. Ethanol: novel end product of vertebrate anaerobic metabolism. Sci., 209, 308-309.
  • Sirri R., Zaccaroni A., Di Biase A., Mordenti O., Stancampiano L., Sarli G., Mandrioli L., 2013. Effects of two water disinfectants (chloramine T and peracetic acid) on the epidermis and gills of Garra rufa used in human ichthyotherapy. Pol. J. Vet. Sci., 16(3), 453-461.
  • Stanley N.R., Pattison D.I., Hawkins C.L., 2010. Ability of hypochlorous acid and Nchloramines to chlorinate DNA and its constituents. Chem. Res. Toxicol., 23(7), 1293-1302.
  • Stara A., Sergejevova M., Kozak P., Masojidek J., Velisek J., Kouba A., 2014. Resistance of common carp (Cyprinuscarpio L.) to oxidative stress after Chloramine-T treatment is increased by microalgae carotenoid-rich diet. Neuro EndocrinolLett., 35, Suppl. 2, 71-80.
  • Suarez R.K., Mallet M.D., Daxboeck C., Hochachka P.W., 1986. Enzymes of energy metabolism and gluconeogenesis in the Pacific blue marlin, Makairanigricans. Can. J. Zool., 64, 694-697.
  • Tatsumi T., Fliss H., 1994. Hypochlorous acid and chloramines increase endothelial permeability: possible involvement of cellular zinc. Am. J. Physiol., 267(4 Pt 2), H1597-1607.
  • Thorburn M.A., Moccia R.D., 1993. Use of chemotherapeutics on trout farms in Ontario. J. Aquat. Anim. Health, 1993, 5, 85-91.
  • Tkachenko H., Kurhaluk N., Grudniewska J., 2012. Effects of Chloramine-T exposure on oxidative stress biomarkers and liver biochemistry of rainbow trout, Oncorhynchusmykiss (Walbaum), brown trout, Salmotrutta (L.), and grayling, Thymallusthymallus. Arch. Pol. Fish., 21, 41-51.
  • Torres J.J., Grigsby M.D., Clarke M.E., 2012. Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase. J. Exp. Biol., 215(Pt 11), 1905-1914.
  • Toxicological Summary for Chloramine-T [127-65-1] and p-Toluenesulfonamide [70-55-3]. 2002. Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences, North Carolina. Submitted by Karen E. Haneke, M.S. North Carolina.
  • Zar J.H., 1999. Biostatistical Analysis. 4th ed., Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3dc33edb-09df-467f-9f83-ed28968ab3cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.