PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 | 1 |

Tytuł artykułu

Population genetics and bat rabies: A case study of eptesicus serotinus in Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The serotine bat, Eptesicus serotinus is the most frequently rabies-infected (European bat lyssavirus 1-type, EBLV-1) bat species in Europe. To confirm Lyssavirus infection of this bat in Poland, we tested for the presence of rabies virus RNA from oropharyngeal swabs using RT-PCR. There was a 0.9% (two out of 212 individuals) level of infection within the overall population of serotine bats studied. However, an appreciation of the potential for pathogen transmission and disease risk requires an understanding of the dispersal of the primary host, and any large-scale geographic barriers that may impede gene flow. Thus, we also studied the patterns of bat dispersal via population genetics using nuclear (seven microsatellite loci) and mitochondrial (mtDNA control region) markers, examined in 12 subpopulations distributed across the country. Molecular analyses of microsatellite loci indicated high genetic diversity at all sites (heterozygosity observed, Ho = 0.53–0.78), and extremely weak genetic structure in the Polish population of the species. The overall FST was 0.012 (95% confidence interval: 0.006–0.020), and pairwise values ranged from 0.00 to 0.05. Only 22% of individuals were assigned to the subpopulation from which they were sampled. The Bayesian approach implemented in STRUCTURE also confirmed that all examined subpopulations should be treated as a single group, indicating a high level of gene flow. There was some evidence for female philopatry (genetic differentiation was greater in maternally-inherited mtDNA than nuclear DNA) and male-biased dispersal, e.g., Ho and the variance of mean assignment were significantly higher in males than in females. Twelve individuals (seven females and five males) were identified as potential first generation migrants. Their migration routes ranged from 60–283 km in females (fi01_35.gif ± SE = 177.9 ± 29.37) to 27–385 km in males (206.4 ± 58.95); surprisingly, no sexual differences were observed and this finding suggests that female-mediated gene flow may occur. MtDNA also produced a strong genetic signal for the demographic expansion (Fu's FS statistics, FS = -26.30, P < 0.01 and a star-shaped haplotype network), which took place roughly 33,000 years BP, i.e., before the Last Glacial Maximum. The genetic uniformity of the Polish population implies that there is no migration barrier to EBLV-1, at least within the country, and the potential threat of rabies virus spreading via migration of infected animals may be higher than previously thought.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.35-56,ref

Twórcy

  • Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
autor
  • Warsaw University of Life Sciences — SGGW, Nowoursynowska 159 C, 02-787 Warszawa, Poland
  • Department of Epidemiology, National Institute of Public Health — National Institute of Hygiene, Chocimska 24, 00-791 Warszawa, Poland
autor
  • Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
  • Department of Genetics, Cancer Center and Institute of Oncology, Roentgen Street 5, 02-781 Warszawa, Poland
autor
  • Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland

Bibliografia

  • 1. B. Amengual , J. E. Whitby , A. King , J. S. Cobo , and H. Bourhy . 1997. Evolution of European bat lyssaviruses. Journal of General Virology, 78: 2319–2328. Google Scholar
  • 2. E. L. P. Anthony 1988. Age determination in bats. Pp. 47–58, in Ecological and behavioral methods for the study of bats ( T. H. Kunz , ed.). Smithsonian Institution Press, Washington, D.C., 533 pp. Google Scholar
  • 3. N. Aréchiga Ceballos , S. Vázquez Morón , J. M. Berciano , O. Nicolás , C. Aznar López , J. Juste , C. Rodríguez Nevado , Á. Aguilar Setién , and J. E. Echevarria . 2013. Novel Lyssavirus in Spain. Emerging Infectious Diseases, 19: 793–795. Google Scholar
  • 4. H. Atterby , J. N. Aegerter , G. C. Smith , C. M. Conyers , T. R. Allnutt , M. Ruedi , and A. D. MacNicoll . 2010. Population genetic structure of the Daubenton's bat (Myotis daubentonii) in western Europe and the associated occurrence of rabies. European Journal of Wildlife Research, 56: 67–81. Google Scholar
  • 5. H. J. Baagøe 2001. Eptesicus serotinus (Schreber, 1774) — Breitflügelfledermaus. Pp. 519–559, in Handbuch der Säugetiere Europas. Volume 4, Part I ( F. Krapp , ed.). Aula-Verlag, Wiebeisheim, x + 602 pp. Google Scholar
  • 6. H. J. Baagøe , and T. S. Jensen . 2007. Dansk pattedyratlas. Gyldental, København, 392 pp. Google Scholar
  • 7. A. C. Banyard , D. T. S. Hayman , C. M. Freuling , T. Muller , As. R. Fooks , and N. Jonhson . In print. Bat rabies. In Rabies: scientific basis of the disease and its management, 3rd edition ( A. C. Jackson , ed.). Elsevier, Oxford. Google Scholar
  • 8. W. Bogdanowicz 1983. Community structure and interspecific interactions in bats hibernating in Poznań. Acta Theriologica, 28: 357–370. Google Scholar
  • 9. H. Bourhy , B. Kissi , M. Lafon , D. Sacramento , and N. Tordo . 1992. Antigenic and molecular characterization of bat rabies virus in Europe. Journal of Clinical Microbiology, 30: 2419–2426. Google Scholar
  • 10. J. Bryja , P. Kaňuch , A Fornusková , T. Bartoniĉka , and Z. Řehák . 2009. Low population genetic structuring of two cryptic bat species suggests their migratory behaviour in continental Europe. Biological Journal of the Linnean Society, 96: 103–114. Google Scholar
  • 11. T. M. Burland , and J. Worthington Wilmer . 2001. Seeing in the dark: molecular approaches to the study of bat populations. Biological Reviews, 76: 389–409. Google Scholar
  • 12. T. M. Burland , E. M. Barratt , R. A. Nichols , and P. A. Racey . 2001. Mating patterns, relatedness and the basis of natal philopatry in the brown long-eared bat, Plecotus auritus. Molecular Ecology, 10: 1309–1321 Google Scholar
  • 13. V. Castella , and M. Ruedi . 2000. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Molecular Ecology, 9: 1000–1002. Google Scholar
  • 14. C. M. C. Catto , and A. M. Hutson . 1999. Eptesicus serotinus. Pp. 142–143, in The atlas of European mammals ( A. M. Mitchell-Jones , G. Amori , W. Bogdanowicz , B. Kryŝtufek , P. J. H. Reijnders , F. Spitzenberger , M. Stubbe , J. B. M. Thissen , V. Vohralik , and J. Zima , eds.). Academic Press, London, 484 pp. Google Scholar
  • 15. C. M. C. Catto , A. M. Hutson , P. A. Racey , and P. J. Stephenson . 1996. Foraging behaviour and habitat use of the serotine bat (Eptesicus serotinus) in southern England. Journal of Zoology (London), 238: 623–633. Google Scholar
  • 16. S. F. Chen , S. J. Rossiter , C. G. Faulkes , and G. Jones . 2006. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros). Molecular Ecology, 15: 1643–1656. Google Scholar
  • 17. M. Clement , D. Posada , and K. Crandall . 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9: 1657–1660. Google Scholar
  • 18. P. L. Davis , E. C. Holmes , F. Larrous , W. H. M. Van Der Poel , K. Tiørnehøj , W. J. Alonso , and H. Bourhy . 2005. Phylogeography, population dynamics, and molecular evolution of European bat byssaviruses. Journal of Virology, 79: 10487–10497. Google Scholar
  • 19. C. Dietz , O. Von Helversen , and D. Nill . 2007. Handbuch der Fledermäuse Europas und Nordwestafrikas: Biologie, Kennzeichen, Gefährdung. Kosmos Verlag, Stuttgart, 399 pp. Google Scholar
  • 20. D. A. Earl , and B. M. Vonholdt . 2011. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. doi: 10.1007/s12686-0119548-7. Google Scholar
  • 21. G. Evanno , S. Regnaut , and J. Goudet . 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611–2620. Google Scholar
  • 22. L. Excoffier , and H. E. L. Lischer . 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10: 564–567. Google Scholar
  • 23. C. Freuling , A. Vos , N. Johnson , I. Kaipf , A. Denzinger , L. Neubert , K. Mansfield , D. Hicks , A. Nuñez , N. Tordo , et al. 2009. Experimental infection of serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a. Journal of General Virology, 90: 2493–2502. Google Scholar
  • 24. C. Freuling , M. Beer , F. J. Conraths , S. Finke , B. HoffMann , B. Keller , J. Kliemt , T. C. Mettenleiter , E. Muhlbach , J. P. Teifke , et al. 2011. Novel Lyssavirus in Natterer's bat, Germany. Emerging Infectious Diseases, 17: 1519–1522. Google Scholar
  • 25. Y.-X. Fu 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147: 915–925. Google Scholar
  • 26. J. Gaisler , V. Hanák , V. Hanzal , and V. Jarský . 2003. Výsledky kroužkování netopýů v Ĉeské republice a na Slovensku [Results of bat banding in the Czech and Slovak Republics, 1948–2000]. Vespertilio, 7: 3–61. [In Czech with English summary]. Google Scholar
  • 27. J. Goudet 2001. FSTAT V2.9.3, a program to estimate and test gene diversities and fixation indices. Available from http://www.unil.ch/izea/softwares/fstat.htlm. Google Scholar
  • 28. C. Harbusch , and P. A. Racey . 2006. The sessile serotine: the influence of roost temperature on philopatry and reproductive phenology of Eptesicus serotinus (Schreber, 1774) (Mammalia: Chiroptera). Acta Chiropterologica, 8: 213–229. Google Scholar
  • 29. H. C. Harpending 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66: 591–560. Google Scholar
  • 30. R. J. Harris , and J. M. Reed . 2002. Behavioral barriers to nonmigratory movements of birds. Annales Zoologi Fennici, 39: 275–290. Google Scholar
  • 31. S. Harris , J. N. Aegerter , S. M. Brookes , L. M. McElhenny , G. Jones , G. C. Smith , and A. R. Fooks . 2009. Targeted surveillance for European bat lyssaviruses in English bats (2003–06). Journal of Wildlife Diseases, 45: 1030–1041. Google Scholar
  • 32. H. Havekost 1960. Die Beringung der Breitflügelfledermaus (Eptesicus serotinus) im Oldenburger Land. Bonner zoologische Beiträge, 11: 222–233. Google Scholar
  • 33. P. R. Heaton , P. Johnstone , L. M. McElhinnery , R. Cowley , E. O'Sullivan , and J. E. Whitby . 1997. Heminested PCR assay for detection of six genotypes of rabies and rabiesrelated viruses. Journal of Clinical Microbiology, 35: 2762–2766. Google Scholar
  • 34. P. W. Hedrick 2005. A standarized genetic differentiation measure. Evolution, 59: 1633–1638. Google Scholar
  • 35. R. Heller , and H. Siegismund . 2009. Relationship between three measures of genetic differentiation: GST, DEST and G'ST: how wrong have we been? Molecular Ecology, 18: 2080–2083. Google Scholar
  • 36. A. M. Hutson , F. Spitzenberger , S. Aulagnier , J. T. Alcaldé , G. Csorba , S. Bumrungsri , C. Franics , P. Bates , M. Gumal , T. Kingston , and P. Benda . 2008. Eptesicus serotinus. In IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. Available from www.iucnredlist.org. Google Scholar
  • 37. R. Hutterer , T. Ivanova , C. Meyer-Cords , and L. RodriGues . 2005. Bat migrations in Europe: a review of banding data and literature. German Agency for Nature Conservation, Bonn, 162 pp. Google Scholar
  • 38. JOINT NATURE CONSERVATION COMMITTEE. 2007. Second Report by the UK under Article 17 on the implementation of the Habitats Directive from January 2001 to December 2006. JNCC, Peterborough. Available from: ww.jncc.gov.uk/ article 17. Google Scholar
  • 39. J. Juste , R. Bilgin , J. Muñoz , and C. Ibáñez . 2009. Mitochondrial DNA signatures at different spatial scales: from the effects of the Straits of Gibraltar to population structure in the meridional serotine bat (Eptesicus isabellinus). Heredity, 103: 178–187. Google Scholar
  • 40. S. T. Kalinowski 2005. A computer program for performing rarefaction on measures of alleli diversity. Molecular Ecology Notes, 5: 187–189. Google Scholar
  • 41. G. Kerth , F. Mayer , and B. König . 2000. Mitochondrial DNA (mtDNA) reveals that female Bechstein's bats live in closed societies. Molecular Ecology, 9: 793–800. Google Scholar
  • 42. M. A. Kimura 1980. Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111–120. Google Scholar
  • 43. M. Kowalski , G. Lesiński , E. Fuszara , G. Radzicki , and J. Hejduk . 2002. Longevity and winter roost fidelity in bats of central Poland. Nyctalus (N.F.), 8: 257–261. Google Scholar
  • 44. I. V. Kuzmin , G. J. Hughes , A. D. Botvinkin , L. A. Orciari , and C. E. Rupprecht , 2005. Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the gene sequence for lyssavirus genotype definition. Virus Research, 111: 28–43. Google Scholar
  • 45. B. D. Lloyd 2003. The demographic history of the New Zealand short-tailed bat Mystacina tuberculata inferred from modified control region sequences. Molecular Ecology, 12: 1895–1911. Google Scholar
  • 46. P. G. Meirmans 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution, 60: 2399–23402. Google Scholar
  • 47. P. G. Meirmans , and P. W. Hedrick . 2011. Assessing population structure: FST and related measures. Molecular Ecology Resources, 11: 5–18. Google Scholar
  • 48. C. M Miller-Butterworth , D. S. Jacobs , and E. H. Harley . 2003. Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature, 424: 187–191. Google Scholar
  • 49. W. Mohr 1957. Die Tollwut. Medizinische Klinik, 52: 1057–1060. Google Scholar
  • 50. C. Moussy , D. J. Hosken , F. Mathews , G. C. Smith , J. N. Aegerter , and S. Bearhop . 2012. Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Review, doi: 10.1111/j.l365-2907.2012.00218.x. Google Scholar
  • 51. M. Nei , and A. K. Roychoudhury . 1974. Sampling variances of heterozygosity and genetic distance. Genetics, 76: 379–390. Google Scholar
  • 52. R. Paekal , and P. E. Smouse . 2001. GenAlEx V6: Genetic Analysis in Excel. Population genetic software for teaching and research. Available from http://www.anu.ed.au/BoZo/GenAlEx/. Google Scholar
  • 53. D. Paetkau , R. Slade , M. Burden , and A. Estoup . 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13: 55–65. Google Scholar
  • 54. E. Petit , L. Excoffier , and F. Mayer . 1999. No evidence of bottleneck in the postglacial recolonization of Europe by the noctule bat (Nyctalus noctula). Evolution, 53: 1247–1258. Google Scholar
  • 55. R. J. Petit , A. El Mousadik , and O. Pons . 1998. Identifying populations for conservation on the basis of genetic markers, Conservation Biology, 12: 844–855. Google Scholar
  • 56. S. Piry , A. Alapetite , J. M. Cornuet , D. Paetkau , L. Baudouin , and A. Estoup . 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95: 536–539. Google Scholar
  • 57. J. K. Pritchard , M. Stephens , and P. Donnelly . 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. Google Scholar
  • 58. F. Prugnolle , and T. De Meeus . 2002. Inferring sex-biased dispersal from population genetic tools: a review. Heredity, 88: 161–165. Google Scholar
  • 59. D. C. Queller , and K. F. Goodnight . 1989. Estimating relatedness using genetic markers. Evolution, 43: 258–275. Google Scholar
  • 60. P. A. Racey , E. M. Barratt , T. M. Burland , R. Deaville , D. Gotelli , G. Jones , and S. B. Piertney . 2007. Microsatellite DNA polymorphism confirms reproductive isolation and reveals differences in population genetic structure of cryptic pipistrelle bat species. Biological Journal of the Linnean Society 90: 539–550. Google Scholar
  • 61. P. A. Racey , A. M. Hutson , and P. H. C. Lina . 2013. Bat rabies, public health and European bat conservation. Zoonoses and Public Health, 60: 58–68. Google Scholar
  • 62. B. Rannala , and J. L. Mountain . 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the USA, 94: 9197–9201. Google Scholar
  • 63. M. Raymond , and F. Rousset . 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86: 248–249. Google Scholar
  • 64. A. R. Rogers , and H. Harpending . 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9: 552–569. Google Scholar
  • 65. F. Rousset 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux, Molecular Ecology Resources, 8: 103–106. Google Scholar
  • 66. J. Rozas , J. C. Sánchez-Delbarrio , X. Messeguer , and R. Rozas . 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496–2497. Google Scholar
  • 67. A. L. Ruprecht 1983. 0024. Eptesicus serotinus (Schreber, 1774). Pp. 73–74, in Atlas rozmieszczenia ssaków w Polsce — Atlas of Polish mammals ( Z. Pucek and J. Raczyński , eds.). PWN, Warszawa, 188 pp. + 90 maps. Google Scholar
  • 68. A. L. Russell , R. A. Medellín , and G. F. McCracken . 2005. Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Molecular Ecology, 14: 2207–2222. Google Scholar
  • 69. K. Sachanowicz , and M. Ciechanowski . 2005. Nietoperze Polski [Bats of Poland]. Multico, Warszawa, 160 pp. Google Scholar
  • 70. K. Sachanowicz , M. Ciechanowski , and K. Piksa . 2006. Distribution patterns, species richness and status of bats in Poland. Vespertilio, 9–10: 151–173. Google Scholar
  • 71. M. Sadkowska-Todys , and B. Kucharczyk . 2012. Rabies in Poland in 2010. Przeglad Epidemiologiczny, 66: 297–302. Google Scholar
  • 72. J. Schatz , A. R. Fooks , L. McElhinney , D. Horton , J. EcheVarria , S. Vázquez-Morón , E. A. Kooi , T. B. Rasmussen , T. Müller , and C. M. Freuling . 2013. Bat rabies surveillance in Europe. Zoonoses and Public Health, 60: 22–34. Google Scholar
  • 73. S. Schneider , and L. Excoffier . 1999. Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics, 152: 1079–1089. Google Scholar
  • 74. J. Serra-Cobo , B. Amengual , C. Abellan , and H. Bourhy . 2002. European bat lyssavirus infection in Spanish bat populations. Emerging Infectious Diseases, 8: 413–420. Google Scholar
  • 75. M. Simon , S. Hüttenbügel , and J. Smit-Viergutz . 2004. Ökologie und Schutz von Fledermäusen in Dörfern und Städten. Schriftenreihe für Landschaftspflege und Naturschutz, 76: 1–275. Google Scholar
  • 76. M. Slatkin , and R. R. Hudson . 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129: 555–562. Google Scholar
  • 77. G. C. Smith , J. N. Aegerter , T. R. Allnutt , A. D. MacNicoll , J. J. Learmount , A. M. Hutson , and H. H. AtterBy . 2011. Bat population genetics and Lyssavirus presence in Great Britain. Epidemiology and Infection, 139: 1463–1469. Google Scholar
  • 78. M. Smreczak , A. Orłowska , and J. F. ŻMudziński . 2009. First case of the European bat lyssavirus type 1b in bats (Eptesicus serotinus) in Poland in retrospective study. Bulletin of the Veterinary Institute in Pulawy, 5: 589–595. Google Scholar
  • 79. A. Svensson , K. K. Andersen , M. Bigler , H. B. Clausen , D. Dahl-Jensen , S. M. Davies , S. J. Johnsen , R. Muscheler , S. O. Rasmussen , R. Röthlisberger et al . 2006. The Greenland Ice Core Chronology 2005, 15–42ka. Part 2: comparison to other records. Quaternary Science Reviews, 25: 3258–3267. Google Scholar
  • 80. A. Sztencel-Jabłonka , and W. Bogdanowicz . 2012. Population genetics study of common (Pipistrellus pipistrellus) and soprano (Pipistrellus pygmaeus) pipistrelle bats from central Europe suggests interspecific hybridization. Canadian Journal of Zoology, 90: 1251–1260. Google Scholar
  • 81. S. Vázquez-Morón , J. Juste , C. Ibáñez , J. M. Berciano , and J. E. Echevarría . 2011. Phylogeny of European bat lyssavirus 1 in Eptesicus isabellinus bats, Spain. Emerging Infectious Diseases, 17: 520–523. Google Scholar
  • 82. K. L. Voje , C. Hemp , Ø. Flagstad , G. P. Saetre , and N. C. Stenseth . 2009. Climatic change as an engine for speciation in flightless Orthoptera species inhabiting African mountains. Molecular Ecology, 18: 93–108. Google Scholar
  • 83. M. J. Vonhof , C. S. Davis , M. B. Fenton , and C. Strobeck . 2002. Characterization of dinucleotide microsatellite loci in big brown bats (Eptesicus fuscus), and their use in other North American vespertilionid bats. Molecular Ecology Notes, 2: 167–169. Google Scholar
  • 84. M. J. Vonhof , C. Strobeck , and M. B. Fenton . 2008. Genetic variation and population structure in big brown bats (Eptesicus fuscus). Journal of Mammalogy, 89: 1411–1420. Google Scholar
  • 85. A. Vos , I. Kaipf , A. Denzinger , A. R. Fooks , N. Johnson , and T. Müller . 2007. European bat lyssaviruses — an ecological enigma. Acta Chiropterologica, 9: 283–296. Google Scholar
  • 86. B. S. Weir , and C. C. Cockerham . 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370. Google Scholar
  • 87. J. Worthington Wilmer , and E. Barratt . 1996. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Research News, 37: 1–3. Google Scholar
  • 88. J. Worthington Wilmer , L. Hall , E. Barratt , and C. Moritz . 1999. Genetic structure and male-mediated gene flow in the ghost bat (Macroderma gigas). Evolution, 53: 1582–1591. Google Scholar
  • 89. L. Xu , C. He , C. Shen , T. Jiang , L. Shi , K. Sun , S. W. Berquis , and J. Feng . 2010. Phylogeography and population genetic structure of the great leaf-nosed bat (Hipposideros armiger) in China. Journal of Heredity, 101: 562–572. Google Scholar

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3d91eec9-4f1d-4eea-8313-d4f28a630167
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.