PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 588 |

Tytuł artykułu

Charakterystyka właściwości prozdrowotnych glukozynolanów

Treść / Zawartość

Warianty tytułu

EN
Characterisctics of healthy properties of glucosilates

Języki publikacji

PL

Abstrakty

PL
Warzywa kapustowate ze względu na właściwości antykancerogenne zawartych w nich glukozynolanów stały się przedmiotem wielu badań. W pracy przedstawiono informacje na temat występowania, budowy i właściwości prozdrowotnych glukozynolanów oraz ich roli w żywieniu i prewencji chorób nowotworowych. Scharakteryzowano zawartości tych bioaktywnych związków w różnych warzywach kapustowatych oraz ich pobieranie z dietą przeciętnego Polaka. Zaprezentowano strukturę i charakterystykę chemiczną oraz metabolizm glukozynolanów i ich pochodnych. Ponadto przybliżono działania prozdrowotne tych wtórnych metabolitów roślin z rodziny krzyżowych, zwracając szczególną uwagę na ich właściwości przeciwutleniające i przeciwnowotworowe. Glukozynolany zawarte w roślinach jadalnych, dostarczone do organizmu człowieka zarówno jako składnik diety, jak i wyizolowane związki chemiczne mogą zmniejszać ryzyko rozwoju nowotworów. Spożywanie ich może być więc jednym ze sposobów profilaktyki nowotworowej, a dobór odpowiedniej strategii profilaktycznej powinien zależeć od typu nowotworu, rodzaju organu i uwarunkowań genetycznych.
EN
The aim of the paper was to display the occurance, structure and pro-health properties of glucosinolates and their derivatives as well as their role in cancer prevention. The focus was made on the content of the biologically active compounds in cruciferous vegetables and their intake from Brassica in Poland. Subsequently the structure and chemical characteristics of glucosinolates were presented. Most consumed Brassica species in human nutrition are cabbage, red cabbage, savoy cabbage, cauliflower, broccoli, brussels sprouts, radish and rapeseed. The most important biologically active substances present in these plants are glucosinolates. Their concentration and relative proportions depend on the environmental conditions of cultivation and storage of plants which are soil fertility, temperature, hydration level, and the presence of pathogens and insects. There are more than 300 different compounds belonging to the glucosinolate known. They are characterized by similarities in structure, which is based on a β-D-tioglucose group, sulfonated oxime group and the side chain derived from one of the seven amino acid. The authors paid special attention to the antioxidant and anticancer properties of these compounds. These properties result from the presence of glucosinolates and associated enzyme – myrosinase. When the contact of these compounds occurs, it comes to the formation of isothiocyanates, indoles and other derivatives with high biological activity, which are essential in the prevention of cancer. Current research on the impact of purified or partially purified derivatives of glucosinolates show the impact of these substances on the development of cancer, and giving hope for the creation of effective chemopreventive measures. Given these data the sufficient consumption of brassica vegetables is important. In Poland, by far the most consumed is cabbage, although for many years the trend is downward. The share of other Brassica vegetables in the diet of Poles are much smaller. The total consumption of cruciferous plants decreases, which, due to their functional properties is not a good fenomenon. The substantions present in vegatables and other edible plants can reduce the risk of cancer. They exert its function as both taken with the diet as well as an isolated chemical compounds. Therefore, its consumption may be one of the ways of preventing cancer. The selection of appropriate treatment strategies should depend on tumor type, body type and genetics.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

588

Opis fizyczny

s.3-14,tab.,bibliogr.

Twórcy

autor
  • Uniwersytet Rolniczy im.Hugona Kołłątaja w Krakowie
autor
  • Uniwersytet Rolniczy im.Hugona Kołłątaja w Krakowie
autor
  • Uniwersytet Rolniczy im.Hugona Kołłątaja w Krakowie

Bibliografia

  • Andréasson E., Bolt Jørgensen L., Höglund AS., Rask L., Meijer J., 2001. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol. 127(4), 1750–1763.
  • Baer-Dubowska W., 2003. Chemoprewencja – profilaktyka i terapia wspomagania nowotworów głowy i szyi. Postępy w Chirurgii Głowy i Szyi 2, 3–14.
  • Beal M.F., 2009. Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat. D. 15 (Suppl 3), 189–194.
  • Bell M.C., Crowley-Nowick P., Bradlow H.L., Sepkovic W., Schmidt-Grimminger D., Howell P., Mayeaux E.J., Tucker A., Turbat-Herrera E.A., Mathis J.M., 2000. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynec. Oncol. 78(2), 123–129.
  • Bouchereau A., Clossais-Besnard N., Bensaoud A., Leport L., Renard M., 1996. Water stress effects on rapeseed quality. Eur. J. Agron. 5(1), 19–30.
  • Brown P.D., Morra M.J., 2009. Brassicaceae Tissues as Inhibitors of Nitrification in Soil. J. Agr. and Food Chem. 57(17), 7706–7711.
  • Chen C., Kong A.N., 2005. Dietary cancer-chemopreventive compounds:from signaling and gene expression to pharmacological effects. Trends Pharmacol. Sci. 26, 318–326.
  • Cho E.J., Lee Y.A., Yoo H.H., Yokozawa T., 2006. Protective effects of broccoli (Brassica oleracea) against oxidative damage in vitro and in vivo. J. Nutr. Sci. Vitaminol. 52(6), 437–444.
  • Cieślik E., Leszczyńska T., Filipiak-Florkiewicz A., Sikora E., Pisulewski P.M., 2007. Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem. 105, 976–981.
  • Cornblatt B.S., Ye L., Dinkova-Kostova A.T., Erb M., Fahey J.W., Singh N.K., Chen M.S., Stierer T., Garrett-Mayer E., Argani P., Davidson N.E., Talalay P., Kensler T.W., Visvanathan K., 2007. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28(7), 1485–1490.
  • Engel E., Baty C., Le Corre D., Souchon I., Martin N., 2002. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J. Agr. Food Chem. 50(22), 6459–6467.
  • Fahey J.W., Zalcmann A.T., Talalay P., 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1), 5–51.
  • Fimognari C., Hrelia P., 2007. Sulforaphane as a promising molecule for fighting cancer. Mutat. Res. 635(2–3), 90–104.
  • Ghawi S.K., Methven L., Niranjan K., 2012. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chem. 138(2–3), 1734–1741.
  • Grubb C.D., Abel S., 2006. Glucosinolate metabolism and its control. Trends Plants Sci. 11(2), 89–100.
  • Jin L., Qi M., Chen D.Z., Anderson A., Yang G.Y., Arbeit J.M., Auborn K.J., 1999. Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res. 59(16), 3991–3997.
  • Jones R.B., Faragher J.D., Winkler S., 2006. A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol. Tech. 4, 1–8.
  • Kapusta-Duch J., Kusznierewicz B., Leszczyńska T., Borczak B., 2016. Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J. of Functional Foods. 23, 412–422.
  • Kelloff G.J., 2000. Perspectives on cancer chemoprevention research and drug development. Adv. Cancer Res. 78, 199–334.
  • Kong J.S., Yoo S.A., Kim H.S., Kim H.A., Yea K., Ryu S.H., Chung Y.J., Cho C.S., Kim W.U., 2010. Inhibition of synovial hyperplasia, rheumatoid T cell activation, and experimental arthritis in mice by sulforaphane, a naturally occurring isothiocyanate. Arthritis Rheumatol. 62(1), 159–170.
  • Kusznierewicz B., Piasek A., Lewandowska J., Śmiechowska A., Bartoszek A., 2007. Właściwości przeciwnowotworowe kapusty białej. ŻTNJ 6(55), 20–34.
  • Kusznierewicz B., Lewandowska J., Kruszyna A., Piasek A., Namieśnik J., Bartoszek A. 2010. The antioxidative properties of white carbage (Brassica oleracea var. capitata f. alba) fresh and submiteed to culinary processing. J. Food Biochem. 34, 262–285.
  • Kusznierewicz B., Bączek-Kwinta R., Bartoszek A., Piekarska A., Huk A., Manikowska A., Antonkiewicz J., Namieśnik J., Konieczka P., 2012. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ. Sci. Technol. 31(11), 2482–2489.
  • Kusznierewicz B., Iori R., Piekarska A., Namieśnik J., Bartoszek A., 2013. Convinient identification of desulfoglucosinolates onthe basis of mass spectra obtained during liquid chromatography – diode array – electrospray ionisation mass spectrometry analysis: Method verification for sprouts of different Brassicaceae species extracts. J. Chromatogr. A 1278, 108–115.
  • Kwiatkowska E., Bawa S., 2007. Glukozynolany w profilaktyce chorób nowotworowych – mechanizmy działania. Roczn. PZH 58(1), 7–13.
  • Lai R.H., Keck A.S., Wallig M.A., West L.G., Jeffery E.H., 2008. Evaluation of the safety and bioactivity of purified and semi-purified glucoraphanin. Food Chem. Toxicol. 46(1), 195–202.
  • Lampe J.W., Chang J.L., 2007. Interindividual differences in phytochemical metabolism and disposition. Semin. Cancer Biol. 17(5), 347–353.
  • Lee B.M., Park K.K., 2003. Beneficial and adverse effects of chemopreventive agents. Mutat. Res. 523–524, 265–278.
  • McClement J., Decker E.A., 2009. Designing functional foods. Measuring and controlling food structure breakdown and nutrient absorption. Woodhead Puublishing Limited.
  • McNaughton S.A., Marks G.C., 2003. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Brit. J. Nutrit. 90, 687–697.
  • Moreno DA., Carvajal M., López-Berenguer C., García-Viguera C., 2006. Chemical and biological characterisation of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 41(5), 1508–1522.
  • Nho C.W., Jeffery E., 2001. The synergistic upregulation of phase II detoxification enzymes by glucosinolate breakdown products in cruciferous vegetables. Toxicol. Appl. Pharm. 174(2), 146–152.
  • Paolini M., Perocco P., Canistro D., Valgimigli L., Pedulli G.F., Iori R., Croce C.D., Cantelli-Forti G., Legator M.S., Abdel-Rahman S.Z., 2004. Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis 25(1), 61–67.
  • Pappa G., Lichtenberg M., Iori R., Barillari J., Bartsch H., Gerhauser C., 2006. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat. Res. 599, 76–87.
  • Pereira F.M., Rosa E., Fahey J.W., Stephenson K.K., Carvalho R., Aires A., 2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agric. Food Chem. 50(21), 6239–6244.
  • Rask L., Andréasson E., Ekbom B., Eriksson S., Pontoppidan B., Meijer J., 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42(1), 93–113.
  • Rouzaud G., Young S.A., Duncan A.J., 2004. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteers. Cancer Epidemiol. Biomarkers Prev. 13(1), 125–131.
  • Sawicka B., Kotiuk E., 2007. Gorczyce jako rośliny wielofunkcyjne. Acta Scientiarum Polonorum, Agricultura 6(2), 17–27.
  • Seow A., Yuan J.M, Sun C.L., Van Den Berg D., Lee H.P., Yu M.C., 2002. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis 23(12), 2055–2061.
  • Shapiro T.A., Fahey J.W., Wade K.L., Stephenson K.K., Talalay P., 2001. Chemoprotective Glucosinolates and Isothiocyanates of Broccoli Sprouts: Metabolism and Excretion in Humans. Cancer Epidemiol. Biomarkers Prev. 10, 501–508.
  • Song L., Thornalley P.J., 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chemical Toxicology 45(2), 216–24.
  • Sosińska E., Obiedziński M.W., 2007. Badania nad bioaktywnymi glukozynolanami w wybranych odmianach warzyw krzyżowych technika HPLC. ŻNTJ 5(54), 129–136.
  • Śmiechowska A., Bartoszek A., Namieśnik J., 2008. Przeciwrakotwórcze właściwości glukozynolanów zawartych w kapuście (Brassica oleracea var. capitata) oraz produktów ich rozpadu. Postępy Hig. Med. Dośw. 62, 125–140.
  • Talalay P., Fahey J.W., 2001. Phytochemicals from Cruciferous Plants Protect against Cancer by Modulating Carcinogen Metabolism. J. Nutr. 13, 3027–3033.
  • Tarozzi A., Morroni F., Merlicco A., Hrelia S., Angeloni C., Cantelli-Forti G., Hrelia P., 2009. Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J. Neurochem. 111(5), 1161–1171.
  • Vallejo F., Tomás-Barberán F.A., Benavente-García A.G., García-Viguera C., 2003. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J. Sci. Food Agric. 83, 307–313.
  • Verkerk R., Dekker M., 2004. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) after various microwave treatments. J. Agric. Food Chem. 52(24), 7318–7323.
  • Wittstock U., Halkier B.A., 2002. Glucosinolate research in the Arabidopsis era. Trends Plants Sci. 7(6), 263–270.
  • Zhao F., Evans E.J., Bilsborrow P.E., Syers J.K., 1994. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L.). J. Sci. Food Agric. 6, 295–304.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3cff1663-7ce5-42fb-8b49-3cfee726f6fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.