PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 3 |

Tytuł artykułu

Biofortification - promising approach to increasing the content of iron and zinc in staple food crops

Treść / Zawartość

Warianty tytułu

PL
Biofortyfikacja - obiecujący sposób zwiększania zawartości żelaza i cynku w podstawowych roślinach uprawnych

Języki publikacji

EN

Abstrakty

EN
Micronutrient deficiencies have increased over recent decades due to the general depreciation of the quality of poor people’s diet, both in developed and developing countries. The deficiencies of iron (Fe) and zinc (Zn) are a critical public health problem worldwide, with the negative impact on health, lifespan and productivity. Biofortification is an agricultural approach that can improve human nutrition on a global scale. Agronomic biofortification is considered a short-term and complementary strategy, but economic analyses suggest that genetic biofortification is the most effective strategy for increasing dietary Fe and Zn intakes of vulnerable populations. Enrichment of cereal grains by breeding is a high-priority area of research, and an effective strategy among other approaches, e.g, fortification, supplementation and food diversification. This review discusses the role of Fe and Zn in plant nutrition, the potential strategies for developing Fe and Zn biofortified crops and their importance in human nutrition.
PL
Obecnie niedobory Fe i Zn stanowią istotny problem dotyczący zdrowia publicznego, są bowiem przyczyną negatywnego wpływu na zdrowie, średnią długość życia i przyrost naturalny. Biofortyfikacja agronomiczna jest to metoda, która może poprawić żywienie człowieka na całym świecie. Analizy ekonomiczne wskazują, że genetyczna biofortyfikacja jest najbardziej skuteczną strategią zwiększenia spożycia Fe i Zn, natomiast agronomiczna biofortifikacja może być podejściem komplementarnym, i to w krótkim czasie. Strategia genetyczna jest obszarem priorytetowym w badaniach zboża, i okazuje się być bardziej skuteczna niż metody fortyfikacji, suplementacji lub zróżnicowania środków spożywczych. W pracy omówiono rolę Fe i Zn w odżywianiu roślin, potencjalne strategie rozwoju upraw z wykorzystaniem biofortyfikacji Fe i Zn oraz znaczenie tych upraw w żywieniu człowieka.

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

p.865-888,fig.,ref.

Twórcy

  • Research Center for Food and Development, A.C. (CIAD). Coordination of Technology of Horticultural and Dairy Products Delicias Campus. 3820 4th avenue South, Vencedores del Desierto, Delicias, Chihuahua, 33039, Mexico
  • Research Center for Food and Development, A.C. (CIAD). Coordination of Technology of Horticultural and Dairy Products Delicias Campus. 3820 4th avenue South, Vencedores del Desierto, Delicias, Chihuahua, 33039, Mexico
autor
  • Research Center for Food and Development, A.C. (CIAD). Coordination of Technology of Horticultural and Dairy Products Delicias Campus. 3820 4th avenue South, Vencedores del Desierto, Delicias, Chihuahua, 33039, Mexico

Bibliografia

  • Aciksoz S.B., Yazicia., Ozturk L., Cakmak I. 2011. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil, 349: 215-225.
  • Aizatwan M., Preuss J.M., Johnson A.A.T., Tester M.A., Schultz C.J. 2011. Investigation of a his-rich arabinogalactan-protein for micronutrient biofortification of cereal grain. Physiol. Plant, 143: 271-286.
  • Beard J.L., Murray-Kolb L.E., Rosales F.J., Solomons N.W., Angelill i M.L. 2006. Interpretation of serum ferritin concentrations as indicators of total-body iron stores in survey populations: the role of biomarkers for the acute phase response. Am. J. Clin. Nutr., 84(6): 1498-1505.
  • Benton D. 2008. Micronutrient status, cognition and behavioral problems in childhood. Eur. J. Nutr., 47(3): 38-50.
  • Bhull ar N.K., Gruissem W. 2013. Nutritional enhancement of rice for human health: The contribution of biotechnology. Biotechnol. Adv., 31(1): 50-57.
  • Bouis H.E., Hotz C., Mcclafferty B., Meenakshi J.V., Pfeiffer w.H. 2011. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull., 32(1): 31-40.
  • Bouis H.E., Welch R.M. 2010. Biofortification – a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci., 50: 20-32.
  • Briat J., Curie C., Gaymard F. 2007. Iron utilization and metabolism in plants. Curr. Opin. Plant Biol., 10: 276-282.
  • Broadley M.R., White P.J., Bryson R.J., Meacham M.C., Bowen H.C., Johnson S.E., Hawkesford M.J., Mcgrath S.P., Zhao F.J., Breward N., Harriman M., Tucker M. 2006. Biofortification of UK food crops with selenium. Proc. Nutr. Soc., 65: 169-181.
  • Brown K.H., Baker S.K., Izincg Steering Committee. 2009. Galvanizing action: Conclusions and next steps for mainstreaming zinc interventions in public health programs. Food Nutr. Bull., 30: 179-184.
  • Cakmak I. 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302: 1-17.
  • Cakmak I., Pfeiffer w.H., Mcclafferty B. 2010. Biofortification of durum wheat with zinc and iron. Cereal Chem., 87: 10-20.
  • Drakakaki G., Marcel S., Glahn R.P., Lund E.K., Pariagh S., Fischer R., Christou P., Stoger E. 2005. Endosperm-specific co-expression of recombinant soybean ferritin and aspergillusphytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol. Biol., 59: 869-880.
  • Durrett T.P., Gassmann W., Rogers E.E. 2007. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol., 144: 197-205.
  • Fleming D.J., Jacques P.F., Dall al G.E., Tucker K.L., Wilson P.W.F., Wood R.J. 1998. Dietary determinants of iron stores in a free-living elderly population.The Framingham heart study. Am. J. Clin. Nutr., 67: 722-33.
  • Ghandily an A., Vreugdenhil D., Aarts M.G.M. 2006. Progress in the genetic understanding of plant iron and zinc. Physiol. Plantarum, 126: 407-417.
  • Gibson R.S. 2012. Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant Soil, 361(1-2): 291-299.
  • Gomez-Galera S., Rojas E., Sudhakar D., Zhu C., Pelacho A.M., Capell T., Christou P. 2010. Critical evaluation of strategies for mineral fortification of staple food crops. Transgen. Res., 19: 165-180.
  • Gruissem W. 2010. Crop biofortification-GMO or non-GMO. J. Biotechnol., 150: 1-576.
  • Gustin J.L., Loureiro m.E., Kim D., Na G., Tikhonova m., Salt D.E. 2009. MTP1-dependent Zn sequestration into shoot vacuoles suggestdual roles in Zn tolerance and accumulation in Zn -hyperaccumulating plants. Plant J., 57: 1116-1127.
  • HARVEST PLUS FAQ. 2009. http://www.harvestplus.org/content/faq. [15 June 2012].
  • Hassan Z., Aarts M.G.M. 2011. Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ. Exp. Bot., 72: 53-63.
  • Hell R., Steph an U.W. 2003. Iron uptake, trafficking and homeostasis in plants. Planta, 216: 541-551.
  • Hennessy-Priest K.A., Mustard J.L., Kell er H.H., Rysdale L.A., Beyers j.E., Goy R., Simpson J.R. 2008. Zinc-fortified foods do not improve intake of total dietary zinc for Ontario preschoolers. J. Am. Coll. Nutr., 27(5): 561-568.
  • Hess S.Y., Brown K.H. 2009. Impact of zinc fortification on zinc nutrition.Food Nutr. Bull., 30: 79-107.
  • Hintze K.J., Theil E.C. 2006. Cellular regulation and molecular interactions of the ferritins. Cell Mol. Life Sci., 63: 591-600.
  • Hirschi K.D. 2009. Nutrient biofortification of food crops. Annu. Rev. Nutr., 29: 401-421.
  • Hurrell R., Egl i I. 2010. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr., 91: 1461-1467.
  • Hussain D., Haydon M.J., Wang Y., Wong E., Sherson S.M., Young J., Camakaris J., Harper J.F., Cobb ett C.S. 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16: 1327-1339. Kerkeb L., Connolly E.L. 2006. Iron transport and metabolism in plants. Genet. Eng., (NY) 27:119-140.
  • Kim S.A., Guerinot m.L. 2007. Mining iron: iron uptake and transport in plants. FEBS Lett., 581: 2273-2280.
  • Lanquar V., Lelievre F., Bolte S., Hames C., Alcon C., Neumann d., Vansuyt G., Curie C., Schroder A., Kramer U., Barbier-Bryg oo H., Thomine S. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 isessential for seed germination on low iron. EMBO J., 24: 4041-4051.
  • Lee S., Jeon U.S., Lee S.J., Kim Y.K., Persson D.P., Husted S., Schjorring J.K., Kakei Y., Masuda H., Nishizawa N.K., An G. 2009. Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc. Natl. Acad. Sci. USA, 106: 22014-22019.
  • Lee S., Persson D.P., Hansen t.H., Husted S., Schjoerring J.K., Kim Y-S., Jeonu S., Kim Y-K., Kakei Y., Masuda H., Nishizawa N.K., An G. 2011. Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol. J., 9: 865-873.
  • Lowe N.M., Fekete K., Decsi T. 2009. Methods of assessment of zinc status in humans: a systematic review. Am. J. Clin. Nutr., 89(6): 2040-2051.
  • Marchetti A., Parker m.S., Moccia L.P., Lin E.O., Arrieta A.L., Ribalet F., Murphy M.E.P., Maldonado m.T., Armbrust E.V. 2009. Ferritin is used for iron storage in bloom-forming marine pinnate diatoms. Nature, 457: 467-470.
  • Modestine K.S., Gouado M.I., Manangam.J., Djeukeu Asongni W., Henri P., Amwam Zoll o P.H., Oberleas D., Tetanye E. 2012. Trace elements in foods of children from Cameroon: A focus on zinc and phytate content. J. Trace Elem. Med. Biol., 26: 201-204.
  • Murgia I., Arosio P., Tarantino D., Soave C. 2012. Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci., 17(1): 47-55.
  • Palmer C.M., Guerinot M.L. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chem. Biol., 5: 333-340.
  • Palmgren M.G., Clernens S., Williams L.E., Kramer U., Borg S., Schjarring J.K., Sanders D. 2008. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci., 13: 464-473.
  • Petry N., Egli i., Zeder C., Walczyk T., Hurrell R. 2010. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr., 140(11): 1977-1982.
  • Pilon M., Cohu C.M., Ravet K., Abdel-Ghany S.E., Gaymard F. 2009. Essential transition metal homeostasis in plants. Curr. Opin. Plant Biol., 12: 347-357.
  • Pixley K.V., Palacios-Rojas n., Glahn R.P. 2011. The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crops Res., 123: 153-160.
  • Puig S., Peñarrubia L. 2009. Placing metal micronutrients in context: transport and distribution in plants. Curr. Opin. Plant Biol., 12: 299-306.
  • Rana A., Joshi M., Prasanna R., Shivay Y.S., Nain L. 2012. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol., 50: 118-126.
  • Ravet K., Touraine B., Boucherez j., Briat J.F., Gayard F., Cell ier F. 2009. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J., 57: 400-412.
  • Roberts L.A., Pierson A.J., Panaviene Z., Walker E.L. 2004. Yellow stripe1. Expanded roles for the maize iron–phytosiderophore transporter. Plant Physiol., 135: 112-120.
  • Rough ead Z.K., Zito C.A., Hunt J.R. 2002. Initial uptake and absorption of nonheme iron and absorption of heme iron inhumans are unaffected by the addition of calcium as cheese to a meal with high iron bioavailability. Am. J. Clin. Nutr., 76: 419-25.
  • Schonfeldt H.C., Gibson N., Vermeulen H. 2010. The possible impact of inflation on nutritionally vulnerable households using South Africa as the case study. Nutr. Bull., 35: 253-266.
  • Schonfeldt H.C., Hall N.G. 2011. Determining iron bio-availability with a constant heme iron value. J. Food Comp. Anal., 24: 738-740.
  • Sperotto R.A., Ricachenevsky F.K., Waldow V.A., Fett J.P. 2012. Iron biofortification in rice: It’s a long way to the top. Plant Sci., 190: 24-39.
  • Stacey M.G., Patel A., Mcclain W.E., Mathieu M., Remley M., Rogers E.E., Gassmann W., Blevins D.G., Stacey G. 2008. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol., 146: 589-601.
  • Tesan F., Hernandez F., Torti H., Massot F., Huarte M., Rubinde Celis E., Arcos Barreiro M.L., Weill r., Cremaschi G., Boccio J., Salg ueiro M.J. 2011. Glycine-stabilized zinc gluconate has similar bioavailability than zinc sulfate in a zinc fortified probiotic food. Open Nutraceut., 4: 136-143.
  • Vert G., Grotz N., Dedaldechamp F., Gaymard F., Guerinot M.L., Briat J.F., Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 14: 1223-1233.
  • White P.J., Broadley M.R. 2011. Physiological limits to zinc biofortification of edible crops. Front. Plant Sci., 2: 80.
  • WHO. 2012. Micronutrient deficiencies. WHO Global Database on Anaemia. Available in http://www.who.int/nutrition/ topics/ida/en/index.html. [22 May 2012].
  • Yakoob M.Y., Theodoratou E., Jabeen A., Imdad A., Eisele T.P., Ferguson J., Jhass A., Rudan I., Campb ell H., Black R.E., Bhuttaz A. 2011. Preventive zinc supplementation in developing countries: impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health, 11(3): 23.
  • Zhang Y.Q., Shi R.L., Karim M.R., Zhang F.S., Zou C.Q. 2010. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J. Agric. Food Chem., 58: 12268-12274.
  • Zuo Y., Zhang F. 2008. Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant Soil, 306: 23-36.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3c9e2e65-f373-4936-acd2-a5850e3e70b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.