PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 3 |

Tytuł artykułu

AtDeg2 - a chloroplast protein with dual protease/chaperone activity

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Chloroplast protease AtDeg2 (an ATP-independent serine endopeptidase) is cytosolically synthesized as a precursor, which is imported into the chloroplast stroma and deprived of its transit peptide. Then the mature protein undergoes routing to its functional location at the stromal side of thylakoid membrane. In its linear structure AtDeg2 molecule contains the protease domain with catalytic triad (HDS) and two PDZ domains (PDZ1 and PDZ2). In vivo AtDeg2 most probably exists as a supposedly inactive haxamer, which may change its oligomeric stage to form active 12-mer, or 24-mer. AtDeg2 has recently been demonstrated to exhibit dual protease/chaperone function. This review is focused on the current awareness with regard to AtDeg2 structure and functional significance.

Wydawca

-

Rocznik

Tom

83

Numer

3

Opis fizyczny

p.169-174,fig.,ref.

Twórcy

autor
  • Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • 1. Narberhaus F, Obrist M, Führer F, Langklotz S. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease withmany talents. Res Microbiol. 2009;160(9):652–659. http://dx.doi.org/10.1016/j.resmic.2009.08.011
  • 2. Kley J, Schmidt B, Boyanov B, Stolt-Bergner PC, Kirk R, Ehrmann M, et al. Structural adaptation of the plant protease Deg1 to repairphotosystem II during light exposure. Nat Struct Mol Biol.2011;18(6):728–731. http://dx.doi.org/10.1038/nsmb.2055
  • 3. Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell.2002;10(3):443–455. http://dx.doi.org/10.1016/S1097-2765(02)00658-5
  • 4. Lipinska B, Sharma S, Georgopoulos C. Sequence analysis and regulation of the htrA gene of Escherichia coli: a σ32-independentmechanism of heat-inducible transcription. Nucleic Acids Res.1988;16(21):10053–10067. http://dx.doi.org/10.1093/nar/16.21.10053
  • 5. Strauch KL, Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad SciUSA. 1988;85(5):1576–1580. http://dx.doi.org/10.1073/pnas.85.5.1576
  • 6. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizesmisfolded protein and activates a protease. Cell. 2004;117(4):483–494.http://dx.doi.org/10.1016/S0092-8674(04)00454-4
  • 7. Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, Chang Z, et al. Activation of DegP chaperone-protease via formation of large cagelike oligomers upon binding to substrate proteins. Proc Natl Acad Sci USA. 2008;105(33):11939–11944. http://dx.doi.org/10.1073/ pnas.0805464105
  • 8. Bai XC, Pan XJ, Wang XJ, Ye YY, Chang LF, Leng D, et al. Characterization of the structure and function of Escherichia coli DegQ asa representative of the DegQ-like proteases of bacterial HtrA familyproteins. Structure. 2011;19(9):1328–1337. http://dx.doi.org/10.1016/j.str.2011.06.013
  • 9. Skórko-Glonek J, Krzewski K, Lipińska B, Bertoli E, Tanfani F. Comparison of the structure of wild-type HtrA heat shock proteaseand mutant HtrA proteins. A Fourier transform infrared spectroscopicstudy. J Biol Chem. 1995;270(19):11140–11146. http://dx.doi.org/10.1074/jbc.271.52.33502
  • 10. Spiess C, Beil A, Ehrmann M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell.1999;97(3):339–347. http://dx.doi.org/10.1016/S0092-8674(00)80743-6
  • 11. Huesgen PF, Schuhmann H, Adamska I. The family of Deg proteases in cyanobacteria and chloroplasts of higher plants. PhysiolPlant. 2005;123(4):413–420. http://dx.doi.org/10.1111/j.1399-3054.2005.00458.x
  • 12. Schuhmann H, Huesgen PF, Adamska I. The family of Deg/HtrA proteases in plants. BMC Plant Biol. 2012;12(1):52. http://dx.doi.org/10.1186/1471-2229-12-52
  • 13. Schuhmann H, Adamska I. Deg proteases and their role in protein quality control and processing in different subcellular compartmentsof the plant cell. Physiol Plant. 2012;145(1):224–234. http://dx.doi.org/10.1111/j.1399-3054.2011.01533.x
  • 14. Sun R, Fan H, Gao F, Lin Y, Zhang L, Gong W, et al. Crystal structure of Arabidopsis Deg2 protein reveals an internal PDZ ligand locking the hexameric resting state. J Biol Chem. 2012;287(44):37564–37569. http://dx.doi.org/10.1074/jbc.M112.394585
  • 15. Haussuhl K, Andersson B, Adamska I. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein inplant photosystem II. EMBO J. 2001;20(4):713–722. http://dx.doi.org/10.1093/emboj/20.4.713
  • 16. Ferro M, Brugiere S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelopeproteins. Mol Cell Proteomics. 2010;9(6):1063–1084. http://dx.doi.org/10.1074/mcp.M900325-MCP200
  • 17. Luciński R, Misztal L, Samardakiewicz S, Jackowski G. The thylakoid protease Deg2 is involved in stress-related degradationof the photosystem II light-harvesting protein Lhcb6 inArabidopsis thaliana. New Phytol. 2011;192(1):74–86. http://dx.doi.org/10.1111/j.1469-8137.2011.03782.x
  • 18. Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:W244–W248. http://dx.doi.org/10.1093/nar/gki408
  • 19. Ströher E, Dietz KJ. The dynamic thiol–disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differentialelectrophoretic mobility. Physiol Plant. 2008;133(3):566–583. http://dx.doi.org/10.1111/j.1399-3054.2008.01103.x
  • 20. Huesgen PF, Schuhmann H, Adamska I. Photodamaged D1 protein is degraded in Arabidopsis mutants lacking the Deg2 protease. FEBS Lett. 2006;580(30):6929–6932. http://dx.doi.org/10.1016/j. febslet.2006.11.058
  • 21. Sun X, Ouyang M, Guo J, Ma J, Lu C, Adam Z, et al. The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsisthaliana: chaperone function of Deg1. Plant J. 2010;62(2):240–249.http://dx.doi.org/10.1111/j.1365-313X.2010.04140.x
  • 22. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, t al. A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005;37(5):501–506. http://dx.doi.org/10.1038/ng1543
  • 23. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seedgermination: epigenetic and genetic regulation of transcription in seed:molecular profiling in Arabidopsis seed. Plant J. 2005;41(5):697–709.http://dx.doi.org/10.1111/j.1365-313X.2005.02337.x
  • 24. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. AGRIS: the Arabidopsis gene regulatory information server, anupdate. Nucleic Acids Res. 2011;39:D1118–D1122. http://dx.doi.org/10.1093/nar/gkq1120
  • 25. Hehl R, Bülow L. AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsisthaliana. In: Staiger D, editor. Plant circadian networks. New York,NY: Springer New York; 2014. p. 139–156. (Methods in molecular biology; vol 1158). http://dx.doi.org/10.1007/978-1-4939-0700-7_9
  • 26. Hwang I, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413(6854):383–389. http://dx.doi.org/10.1038/35096500
  • 27. Jeong MJ, Shih MC. Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis.Biochem Biophys Res Commun. 2003;300(2):555–562. http://dx.doi.org/10.1016/S0006-291X(02)02892-9
  • 28. Shaikhali J, de Dios Barajas-Lopez J, Otvos K, Kremnev D, Garcia AS, Srivastava V, et al. The CRYPTOCHROME1-dependent response toexcess light is mediated through the transcriptional activators ZINCFINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEMLIKE1 and ZML2 in Arabidopsis. Plant Cell. 2012;24(7):3009–3025.http://dx.doi.org/10.1105/tpc.112.100099
  • 29. Benlloch R, Kim MC, Sayou C, Thévenon E, Parcy F, Nilsson O. Integrating long-day flowering signals: a LEAFY bindingsite is essential for proper photoperiodic activation ofAPETALA1. Plant J. 2011;67(6):1094–1102. http://dx.doi.org/10.1111/j.1365-313X.2011.04660.x
  • 30. Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 2008;582(6):943–948. http://dx.doi.org/10.1016/j.febslet.2008.02.037
  • 31. Doherty CJ, van Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis CAMTA transcription factors in cold-regulated geneexpression and freezing tolerance. Plant Cell. 2009;21(3):972–984.http://dx.doi.org/10.1105/tpc.108.063958
  • 32. Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-inducedsenescence by directly regulating NDR1 and EIN3. Plant Physiol. 2012;158(4):1847–1859. http://dx.doi.org/10.1104/pp.111.192310
  • 33. Zhang K, Gan SS. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydrationin senescing Arabidopsis leaves. Plant Physiol. 2012;158(2):961–969.http://dx.doi.org/10.1104/pp.111.190876
  • 34. Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 2007;145(3):1073–1085. http://dx.doi.org/10.1104/pp.107.104828
  • 35. Sinvany-Villalobo G, Davydov O, Ben-Ari G, Zaltsman A, Raskind A, Adam Z. Expression in multigene families. Analysis of chloroplastand mitochondrial proteases. Plant Physiol. 2004;135(3):1336–1345.http://dx.doi.org/10.1104/pp.104.043299
  • 36. Adamiec M, Luciński R, Jackowski G. The irradiance dependent transcriptional regulation of AtCLPB3 expression. Plant Sci. 2011;181(4):449–456. http://dx.doi.org/10.1016/j.plantsci.2011.07.004
  • 37. Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK. Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol Plant. 2002;114(1):92–101. http://dx.doi. org/10.1034/j.1399-3054.2002.1140113.x
  • 38. Żelisko A, Jackowski G. Senescence-dependent degradation of Lhcb3 is mediated by a thylakoid membrane-bound protease. J Plant Physiol. 2004;161(10):1157–1170. http://dx.doi.org/10.1016/j.jplph.2004.01.006

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3b997866-1ade-434e-987f-aa5fab54d1d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.