PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 31 |

Tytuł artykułu

Impact of microorganisms on climate change: a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN

Wydawca

-

Rocznik

Tom

31

Opis fizyczny

p.36-47,fig.,ref.

Twórcy

autor
  • Forestry Research Institute of Nigeria, Federal College of Forest Resources Management, Benin City, Nigeria
  • Forestry Research Institute of Nigeria, Federal College of Forest Resources Management, Benin City, Nigeria
  • Forestry Research Institute of Nigeria, Federal College of Forest Resources Management, Benin City, Nigeria
  • Forestry Research Institute of Nigeria, Federal College of Forest Resources Management, Benin City, Nigeria

Bibliografia

  • [1] Anne B (2010): The nitrogen cycle: Processes, players and human impact. Nature Education Knowledge 2: 1-9.
  • [2] Barnosky, A. D. et al. (2011): Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57.
  • [3] Bardgett, R. D. & van der Putten, W. H. (2014): Belowground biodiversity and ecosystem functioning. Nature 515, 505–511.
  • [4] Bousquet P, Ciais P, Miller J.B, Dlugokencky EJ, Hauglustaine DA, et al. (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439-443
  • [5] Crowther T.W, Thomas S.M, Maynard D.S, Baldrian P, Covey K, Frey S.D, van Diepen L.T.A, Bradford M.A (2015): Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci 112(22): 7033–7038
  • [6] Charu G, Prakash D, Sneh G (2014): Role of microbes in combating global warming. Int J Pharm Sci Lett 4: 359-363.
  • [7] Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).
  • [8] Davidson E.A, Janssens I.A (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173.
  • [9] Dupre J (2008). Climate change and microbes: influence in numbers. http://environmentalresearchweb.org/cws/article/opinion/37020.Accessed 15 Dec 2015.
  • [10] Groffman P (2012). Terrestrial denitrification: Challenges and opportunities. Ecol Proc 1: 1-11.
  • [11] Hasin A.A.L, Gurman S.J, Murphy L.M, Perry A, Simth T.J, et al. (2010): Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44: 400-405.
  • [12] Houghton J.T, Ding Y, Griggs D.J, Noguer M, van der Linder P.J, Dai X, Maskell K & Johnson CA, eds. (2001) Climate change 2001: the scientific basis in book: Climate Change 2001: The Scientific Basis, Publisher: Cambridge University Press
  • [13] IPCC Climate Change (2007): Synthesis report. Summary for policymakers. Available at http://www.ipcc.ch (accessed November 2007).
  • [14] Jama Bashir, Ndufa J.K, Buresh R.J, Shepherd K.D (2013): Vertical distribution of roots and soil nitrate: Tree species and phosphorus effects. Soil Sci Soc Am J 62: 280-286.
  • [15] Johnson, C. N. et al. (2017): Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275.
  • [16] Joshi P.A, Shekhawat D.B (2014) Microbial contributions to global climate changes in soil environments: Impact on carbon cycle. Ann Appl Biosci 1: 7-9
  • [17] Microbiology Online (2015): Microbes and climate change.http://www.microbiologyonline.org.uk/aboutmicrobiology/microbes and climate change. Accessed 15 Dec 2015
  • [18] NASA (2015a): http://climate.nasa.gov/solutions/adaptation-mitiga tion/. Accessed 15 Dec 2015.
  • [19] Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, et al. (2005) Biofiltration of methane: An experimental study. Chem Eng J 113: 111-117.
  • [20] Olufemi A, Reuben O, Olufemi O (2014) Global climate change. J Geosci Environ Protect 2: 114-122.
  • [21] Pradnya A. Joshi, Dhiraj B. Shekhawat (2014): Microbial contributions to global climate changes in soil environments: Impact on carbon cycle. Ann Appl Biosci 1: 7-9.
  • [22] Pounds, J. A. et al. (2006): Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167
  • [23] Pecl, G. T. et al. (2017): Biodiversity redistribution under climate change: Impacts on ecosystems and human well- being. Science 355, eaai9214.
  • [24] Ram K.S, Shwetang K (2014): Review on changing natural nitrogen cycle: Special reference to Kingdom of Saudi Arabia. Intr J Eng Sci Inven Res Dev 1: 73-80.
  • [25] Svoboda E (2015b): How wetland microbes impact global climate http://discovermagazine.com/2015/june/22smallwonders. Accessed 15 Dec 2015
  • [26] Sanford R.A, Wagner D.D, Cu Q.W, Chee-Sanford J, Thomas S.H, et.al. (2012) Unexpected non-denitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci 109: 19709-19714.
  • [27] Singh B.K, Bardgett R.D, Smith P, Dave S.R (2010): Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8: 779- 790
  • [28] Semrau J.D, DiSpirito A.A, Yoon S (2010): Methanotrophs and copper. FEMS Microbiol Rev 34: 496-531.
  • [29] Shindell D, Johan C.I, Kuylenstierna, Elisabetta V, Rita V.D, et al. (2012): Simultaneously mitigating near-term climate change and improving human health and food security. Science 335: 183-189.
  • [30] US EPA (2016): Climate change: Greenhouse Gas Emissions: Greenhouse Gases Overview https://www3.epa.gov/climate change/ghgemissions/gases.html 2016. Accessed 20 March 2016.
  • [31] United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2018 (United Nations, 2018
  • [32] Vitousek P.M, Menge D.N.L, Reed S.C, Cleveland C.C (2013): Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci 368: 1-9.
  • [33] Orr C.H, James A, Leifert C, Cooper J.M, Cummings S.P, et al. (2011):Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 77: 911-919.
  • [34] Weiman S (2015): Microbes help to drive global carbon cycling and climate change. Microbe Mag 10: 233-238
  • [35] Ward B.B (2011): Measurement and distribution of nitrification rates in the oceans. Methods Enzymol 486: 307-323.
  • [36] Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012): Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46: 1027-1037
  • [37] Walsh D.A (2015): Consequences of climate change on microbial life in the ocean. Microbiol Today (Nov 2015 issue). Microbiology Society, England
  • [38] Zimmer C (2010): The microbe factor and its role in our climate future. Yale Environ. Yale Environment 360. Published at the Yale School of Forestry & Environmental Studies.
  • [39] Zimmerman L, Labonte B (2015): Climate change and the microbial methane banquet. Clim Alert 27: 1-6.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-39f39b7d-5bee-40ab-af0f-1f68b7f0bd90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.