PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

The oxidative stress response of Mirabilis jalapa to exhausted engine oil (EEO) during phytoremediation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The current study elucidates the responses of a typical ornamental plant Mirabilis jalapa to exhausted engine oil (EEO) during phytoremediation. Greenhouse experiments were established to assess the plant’s response in terms of germination, biomass, chlorophyll content, superoxide dismutase (SOD) activity, catalase activity, soluble protein content, and hydrocarbon degradation at different concentrations of EEO (0.5 to 15 mL). Results illustrate that the increasing concentration of EEO reduced plant growth, whose responses were further confirmed by decreased chlorophyll content (chlorophyll a and b), high superoxide dismutase activity, lowered catalase activity, and reduced soluble protein content. Although the germination rate was successful in all the treatments, we observed a significant reduction in biomass – especially the elongation inhibition rate (>48.4%) – at EEO concentrations higher than 2%. Conclusively, the high toxicity index (40.4% to 93.3%) and lesser hydrocarbons degradation (36% to 10.8%) render the plant species unsuitable for future EEO phytoremediation experiments.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

P.2581-2587,fig.,ref.

Twórcy

autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore
autor
  • Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
autor
  • College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore
autor
  • Petroleum Engineering and Geosciences Department, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia

Bibliografia

  • 1. Abioye P.O., Aziz A.A., Agamuthu P. Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water Air Soil Pollut. 209 (1-4), 173, 2010.
  • 2. Osuji L. C.,Nwoye I. An appraisal of the impact of petroleum hydrocarbons on soil fertility: the Owaza experience. Afr. J. Agric. Res. 2 (7), 318, 2007.
  • 3. Fuentes M., Font R., Gómez-Rico M., Martín-Gullón I. Pyrolysis and combustion of waste lubricant oil from diesel cars: decomposition and pollutants. J. Anal. Appl. Pyrolysis. 79 (1), 215, 2007.
  • 4. Lam S.S., Russell A.D., Chase H.A. Microwave pyrolysis, a novel process for recycling waste automotive engine oil. Energy. 35 (7), 2985, 2010.
  • 5. Lam S.S., Russell A.D., Lee C.L., Chase H.A. Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel. 92 (1), 327, 2012.
  • 6. Lapinskienė A., Martinkus P., Rėbždaitė V. Ecotoxicological studies of diesel and biodiesel fuels in aerated soil. Environ. Pollut. 142 (3), 432, 2006.
  • 7. Ololade I. Prediction of polycyclic aromatic hydrocarbons toxicity using equilibrium partitioning approach and narcosis model. Bull. Environ. Contam. Toxicol. 85 (3), 238, 2010.
  • 8. Arslan M., Imran A., Khan Q. M., Afzal M. Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 1-15, 2015.
  • 9. Yebra -Pimentel I., Fernández-González R., Martínez-Carballo E., Simal -Gándara J. A critical review about the health risk assessment of PAHs and their metabolites in foods. Crit. Rev. Food Sci. Nutr. 55 (10), 1383, 2015.
  • 10. Baird C.,Cann M. Pesticides. in Fiorillo J., Treadwa y K., Weiss V., (Eds.) Environmental chemistry. 415. 2005
  • 11. Li W., Xu B., Song Q., Liu X., Xu J., Brookes P.C. The identification of ‘hotspots’ of heavy metal pollution in soil-rice systems at a regional scale in eastern China. Sci. Total. Environ. 472, 407, 2014.
  • 12. Khan M.U., Sessitsch A., Harris M., Fatima K., Imran A., Arslan M., Shabir G., Khan Q.M., Afzal M. Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front. Plant Sci. 5 (755), 10.3389, 2015.
  • 13. Khan S., Afzal M., Iqbal S., Khan Q.M. Plantbacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere. 90 (4), 1317, 2013.
  • 14. Batt y L.C., Dolan C. The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit. Rev. Environ. Sci. Technol. 43 (3), 217, 2013.
  • 15. Chen L., Liu X., Zhang X., Liu S., Wei J., Xu G. Response characteristics of seed germination and seedling growth of Acorus tatarinowii under diesel stress. Plant Soil. 368 (1-2), 355, 2013.
  • 16. Baek K.-H., Kim H.-S., Oh H.-M., Yoon B.-D., Kim J., Lee I.-S. Effects of crude oil, oil components, and bioremediation on plant growth. J. Environ. Sci. Health. Part A. 39 (9), 2465, 2004.
  • 17. Molina -Barahona L., Vega -Loyo L., Guerrero M., Ramirez S., Romero I., Vega -Jarquín C., Albores A. Ecotoxicological evaluation of dieselcontaminatedsoil before and after a bioremediation process. Environ. Toxicol. 20 (1), 100, 2005.
  • 18. Zhang X., Liu X., Liu S., Liu F., Chen L., Xu G., Zhong C., Su P., Cao Z. Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. J. Hazard. Mater. 193, 45, 2011.
  • 19. Kaur N., Gupta A.K. Signal transduction pathways under abiotic stresses in plants. Curr. Sci. 88 (11), 1771, 2005.
  • 20. Shahid M., Dumat C., Pourrut B., Abbas G., Shahid N., Pinelli E. Role of metal speciation in leadinduced oxidative stress to Vicia faba roots. Russ. J. Plant Physl. 62 (4), 448, 2015.
  • 21. Ünyayar S., Çelik A., Çekiç F. Ö., Gözel A. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis. 21 (1), 77, 2006.
  • 22. Møller I. M., Jensen P. E., Hansson A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459, 2007.
  • 23. Zhou Q., Diao C., Sun Y., Zhou J. Tolerance, uptake and removal of nitrobenzene by a newly-found remediation species Mirabilis jalapa L. Chemosphere. 86 (10), 994, 2012.
  • 24. Cao A., Carucci A., Lai T., La Colla P., Tamburini E. Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur. J. Soil Biol. 43 (4), 200, 2007.
  • 25. Peng S., Zhou Q., Cai Z., Zhang Z. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in agreenhouse plot experiment. J. Hazard. Mater. 168 (2), 1490, 2009.
  • 26. Liu F., Ying G.-G., Tao R., Zhao J.-L., Yang J.-F., Zhao L.-F. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. 157 (5), 1636, 2009.
  • 27. Wei X., Wu S., Nie X., Yediler A., Wong M. The effects of residual tetracycline on soil enzymatic activities and plant growth. J. Env. Sci. Health. Part B. 44 (5), 461, 2009.
  • 28. Afzal M., Yousaf S., Reichenauer T. G., Sessitsch A. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int. J. Phytoremediation. 14 (1), 35, 2012.
  • 29. Abràmoff M.D., Magalhães P.J., Ram S.J. Image processing with ImageJ. Biophoton. Int. 11 (7), 36, 2004.
  • 30. Mehmood R., Riaz M., Does R.J. Control charts for location based on different sampling schemes. J. of Appl. Stat. 40 (3), 483, 2013.
  • 31. Patil G., Sinha A., Taillie C. 5 Ranked set sampling. Handbook of statistics. 12, 167, 1994.
  • 32. Odjegba V.,Fasidi I. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology. 13 (7), 637, 2004.
  • 33. Afzal M., Khan S., Iqbal S., Mirza M. S., Khan Q.M. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int. Biodeterior. Biodegrad. 85, 331, 2013.
  • 34. Gulen H.,Eris A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166 (3), 739, 2004.
  • 35. Shangari N., O’Brien P.J. Catalase activity assays. Curr. Protoc. Toxicol. 7.7. 1-7.7. 16, 2006.
  • 36. Bannister J. V.,Calabrese L. Assays for superoxide dismutase. Method. Biochem. Anal. 32, 279, 2006.
  • 37. Lichtenthaler H. K.,Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UVVIS spectroscopy. Current Protocols in Food Analytical Chemistry. 2001.
  • 38. Riaz M., Mahmood T., Arslan M. Non-Parametric versus Parametric Methods in Environmental Sciences. Bullet. Environ. Stud. 1 (1), 28, 2016.
  • 39. Arslan M., Afzal M., Amin I., Iqbal S., Khan Q.M. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PloS ONE. 9 (10), e111208, 2014.
  • 40. Bona C., Rezende I.M.d., Santos G.d.O., Souza L.A.d. Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) Seedlings. Braz. Arch. Biol. Technol. 54 (6), 1379, 2011.
  • 41. Sobrero M. C.,Ronco A. Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L.). Ensayos toxicológicos y métodos de evaluación de calidad de aguas. IDRC/IMTA. Canadá, Capítulo. 4, 71, 2004.
  • 42. Adenipekun C.O., Oyetunji O.J., Kassim L.S. Effect of spent engine oil on the growth parameters and chlorophyll content of Corchorus olitorius Linn. The Environmentalist. 28 (4), 446, 2008.
  • 43. Agbogidi O., Eruotor P. Morphological changes due to spent engine oil contamination and its heavy metal components of Jatropha curcas Linn. seedlings. Proceedings of the International on Bioscience Biotechnology and Health care Sciences (ICBBHS. 2012) held in Singapore between 14th and 15th of. 88, 2012.
  • 44. Sharifi M., Sadeghi Y., Akbarpour M. Germination and growth of six plant species on contaminated soil with spent oil. Int. J. Env. Sci. Tech. 4 (4), 463, 2007.
  • 45. Vwioko D., Fashemi D. Growth response of Ricinus communis L (Castor Oil) in spent lubricating oil polluted soil. J. Appl. Sci. Environ. Mgt. 9 (2), 73, 2005.
  • 46. Agbogidi O., Ohwo A. Trace metal profile of Moringa oleifera (Linn.) seedlings sown in spent lubricating oil contaminated soils. J. Curr. Res. Sci. 1 (4), 242, 2013.
  • 47. Nwoko C., Okeke P., Agwu O., Akpan I. Performance of Phaseolus vulgaris L. in a soil contaminated with spentengine oil. Afr. J. Biotech. 6 (16), 2007.
  • 48. Sheikh S.A., Tak M.A., Wani M.R., Ahmad P. Response of urdbean (vigna mungo (l.) Hepper) in terms of growth, yield and biochemical parameters to spent engine oil pollution. J. Appl. Phytotechnol. Environ. Sanit. 2 (4), 2013.
  • 49. Van Assche F.,Clijsters H. A biological test system for the evaluation of the phytotoxicity of metal-contaminated soils. Environ. Pollut. 66 (2), 157, 1990.
  • 50. Olubodun O.S., Eriyamremu E.G. Effect of Different Crude Oil Fractions on Growth and Oxidative Stress Parameters of Maize Radicle. Int. J. Plant Soil Sci. 2 (1), 144, 2013.
  • 51. Liu H., Weisman D., Ye Y.-B., Cui B., Huang Y.-H., Colón-Carmona A., Wang Z.-H. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci. 176 (3), 375, 2009.
  • 52. Ija z A., Imran A., Ulhaq M.A., Khan Q.M., Afzal M. Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil. 1-17, 2015

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-39e74f00-4bdb-46f5-a820-d779a6531544
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.