PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

How organic fertilizers change chemical element leaching: a summary of the lysimeter studies in lithuania, 1987-2014

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our paper presents summarized results of the lysimetric experiments performed in 1987-2014 to determine the impact of various organic fertilizers (solid and semi-liquid cattle manure, green manure crops, straw) on chemical element leaching (N, P, K, Ca, Mg, S, Cl, Corg), estimates atmospheric precipitation infiltration trends due to varying climatic factors, and discusses changes of soil profile properties in lysimeters after long-term experiments. The experiments were performed at the Vokė branch of the Lithuanian Research Centre for Agriculture and Forestry. Lysimeter surface area is 1.75 m2 and the test soil (sandy loam Luvisol) layer is 0.60 m. It was determined that under climatic conditions of Lithuania, chemical elements leaching is most intensive in soils heavily fertilized with manure. Every year, from soil fertilized with solid manure (N300) an average of 12.3% nitrogen (which is incorporated with manure) leached. Compared to unfertilized soil, nitrogen leaching increased by 96%. Depending on hydrothermal conditions, during the year of incorporation 2.2-17.2% and during the subsequent year 1.5-5.0% of nitrogen from the incorporated mineral fertilizers leached. Fertilization with solid and semi-liquid cattle manure stimulates leaching of calcium (47-51%), magnesium (46-62%), and chlorine (34-56%), but produces no essential impact on the loss of potassium and sulfur. Cover crops for green manure reduce atmospheric precipitation infiltration in sandy loam soil during autumn, and the effects of nutrient leaching depend on the plant species. Fabaceae plants clover (Trifolium pretense L.) stimulate nitrogen leaching, while Poaceae orchard grass (Dactylis glomerata L.) and Brassicaceae fodder radish (Raphanus sativus L.) lessen it. Incorporation of green manure biomass does not alter potassium and calcium leaching, but substantially reduces organic carbon leaching. It was determined that in 1987-2014 on the territory of Lithuania, due to increased averagecartemperatures and lengthening of the spring and autumn periods, annual precipitation infiltration increased (y annual = 17.0x + 267.9 R2 = 0.29) and this enlarges the risk of chemical element leaching. After long-term experiments on agro-technical measures that substantially alter soil properties, the soil in lysimeters should be replaced or left for a few years until the properties are equal again.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

P.2589-2599,fig.,ref.

Twórcy

  • Lithuanian Research Centre for Agriculture and Forestry, Voke Branch Lithuania, Vilnius, Zalioji Aikste 2, LT 02232
autor
  • Lithuanian Research Centre for Agriculture and Forestry, Voke Branch Lithuania, Vilnius, Zalioji Aikste 2, LT 02232
autor
  • Lithuanian Research Centre for Agriculture and Forestry, Voke Branch Lithuania, Vilnius, Zalioji Aikste 2, LT 02232
  • Lithuanian Research Centre for Agriculture and Forestry, Voke Branch Lithuania, Vilnius, Zalioji Aikste 2, LT 02232

Bibliografia

  • 1. KUTRA G., GAIGALAS K., ŠMITIENĖ A. Land use influence on nitrogen leaching and options for pollution mitigation. Zemdirbyste-Agriculture, 93 (4), 119-129, 2006.
  • 2. ADOMAITIS T., MAŽVILA J., VAIŠVILA Z., ARBAČIAUSKAS J., ANTANAITIS A., LUBYTĖ J., ŠUMSKIS D. The effect of long-term fertilisation on anion leaching. Žemdirbystė =Agriculture, 1 (97), 71, 2010.
  • 3. SØRENSEN P., RUBÆK G.H. Leaching of nitrate and phosphorus after autumn and spring application of separated solid animal manures to winter wheat. Soil Use and Management, 28 (1), 1-11, 2012.
  • 4. MEISSNER R., RUPP H., SEEGER J. SEYFARTH M. Innovation in lysimeter techniques - 18th World Congress of Soil Science, Philadelphia, USA, 2006.
  • 5. GALVONAITĖ A., MISIŪNIENĖ M., VALIUKAS D., BUITKUVIENĖ M.S. Lithuanian climate – Kaunas, 207 , 2007 [In Lithuanian, English summary].
  • 6. ARLAUSKIENĖ A., MAIKŠTĖNIENĖ S., ŠLEPETIENĖ A. The effect of catch crops and straw on spring barley nitrogen nutrition and soil humus composition. Zemdirbyste-Agriculture, 96 (2), 53, 2009 [In Lithuanian, English summary].
  • 7. SLEUTEL S., DE NEVE S., NEMETH T., TOTH T., HOFMAN G. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments. European Journal of Agronomy, 25 (3), 280, 2006.
  • 8. BHOGAL A., NICHOLSON F.A., CHAMBERS B.J. Organic carbon additions: effects on soil bio-physical and physico-chemical properties. European Journal of Soil Science, 60, 276, 2009.
  • 9. PAPPA V.A., REES R.M., WALKER R.L., BADDELEY J.A., WATSON C.A. Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agriculture, Ecosystems & Environment, 141 (1-2), 153, 2011.
  • 10. RANDALL N.P, DONNISON L.M., LEWIS P.J. How effective are slurry storage, cover or catch crops, woodland creation, controlled trafficking or break-up of compacted layers, and buffer strips as on-farm mitigation measures for delivering an improved water environment? Environmental Evidence, 1, 12, 2012.
  • 11. Soil atlas of Europe. European Soil Bureau Network Europen commission, 128, 2005.
  • 12. TRIPOLSKAJA L., MAŠAUSKAS V., ADOMAITIS T., KARČIAUSKIENĖ D., VAIŠVILA Z. Management of agroecosystem components. Results of long-term agrochemical experiments. Lithuania, Vilnius, 567, 2010.
  • 13. KRIAUCIUNIENE J., MEILUTYTE-BARAUSKIENE D., REIHAN A., KOLTSOVA T., LIZUMA L., SARAUSKIENE D. Variability in temperature, precipitation and river discharge in the Baltic States - Boreal Environment Research, 17, 150, 2012.
  • 14. KRIAUCIUNIENE J., REIHAN A., KOLCOVA T., MEILUTYTE-BARAUSKIENE D., LIZUMA L. Regional temperature, precipitation and runoff series in the Baltic countries - Conference on Future Climate and Renewable Energy: Impacts, Risks and Adaptation. Oslo, Norway. P. 14, 2010.
  • 15. FREI CH., SCHAR CH., LUTHI D., DAVIES H.C. Heavy precipitation processes in a warmer climate. Geophysical Research Letters, 25 (9), 1431, 1998.
  • 16. MCLSAAC G. Agricultural nutrient management in the Great Lakes region (In: Sustainable Agriculture, Ed.: Ch. Jakobsson). Sweden, Uppsala University, 102, 2012.
  • 17. LIU J. Phosphorus leaching as influenced by animal manure and catch crops - Diss. summary. Uppsala: Acta Universitatis agriculturae Sueciae, 55, 2013.
  • 18. ERICKSON J.E., CISAR J.L., SNYDER G.H., VOLIN J.C. Phosphorus and potassium leaching under contrasting residential landscape models established on a sandy soil. Crop Science, 45, 546, 2005.
  • 19. ERIKSEN J., ASKEGAARD M. Sulphate leaching in an organic crop rotation on sandy soil in Denmark.Agriculture, Ecosystems & Environment, 78 (2), 107, 2000.
  • 20. STAUGAUTIS G., VAISVILA Z. Innovative solutions of soil and agrochemistry science. Kaunas, 319, 2015 [In Lithuanian, English summary].
  • 21. MACDONALD A.J., POULTON P.R., HOWE M.T., GOULDING K.W.T., POWLSON D.S. The use of cover crops in cereal-based cropping systems to control nitrate leaching in SE England. Plant and Soil, 273, 355, 2005.
  • 22. CICEK H., THIESSEN MARTENS J.R., BAMFORD K.C., ENTZ M.H. Late-season catch crops reduce nitrate leaching risk after grazed green manures but release N slower than wheat demand. Agriculture, Ecosystems & Environment, 202, 31, 2015.
  • 23. CONSTANTIN J., MARY B., LAURENT F., AUBRION G., FONTAINE A., KERVEILLANT P., BEAUDOIN N. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three longterm experiments.Agriculture, Ecosystems & Environment 35 (4), 268, 2010.
  • 24. HOOKER K.V., COXON C.F., HACKETT R., KIRWAN L.E., O'KEEFFE E., RICHARDS K.G. Evaluation of Cover Crop and Reduced Cultivation for Reducing Nitrate Leaching in Ireland. Journal of Environmental Quality, 37 (1), 138, 2008.
  • 25. THOMSEN I. K. Nitrate leaching under spring barley is influenced by the presence of a ryegrass catch crop: Results from a lysimeter experiment. Agriculture, Ecosystems & Environment, 111 (1-4), 21, 2005.
  • 26. RINNOFNER T., FRIEDEL J.K., DE KRUIJFF R., PIETSCH G., FREYER B. Effect of catch crops on N dynamics and following crops in organic farming. Agronomy for Sustainable Development, 28, 551, 2008.
  • 27. SAPKOTA T.B., ASKEGAARD M., LÆGDSMAND M., OLESEN J.E. Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crops Research, 125, 129, 2012.
  • 28. COOKSON W.R., CORNFORTH I.S., ROWARTH J. S. Winter soil temperature (2–15oC) effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study. Soil Biology and Biochemistry, 34 (10), 1401, 2002.
  • 29. VALKAMA E., LEMOLA R., KÄNKÄNEN H., TURTOLA E. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries.Agriculture, Ecosystems & Environment, 203, 93, 2015.
  • 30. VINTHER F.P., HANSEN E.M., ERIKSE J. Leaching of soil organic carbon and nitrogen in sandy soils after cultivating grass-clover swards - Biology and fertility of soil, 43, 12, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-39c4c2c3-3569-40d5-81a6-baa5bb740b3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.