PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 69 | 1 |

Tytuł artykułu

Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Taking tissue engineering applications into clinical trials requires the development of efficient and safe protocols incorporated with effective 3-dimentional cell culturing and differentiation systems in order to develop transplantable tissues that may offer a life-line for patients in the future. Cord blood, which is perhaps the most abundant world stem cell source, has shown previously practical and ethical advantages over other stem cells sources in many research and clinical applications including regenerative medicine. We previously developed a three-step protocol for isolation, expansion and sequential neuronal differentiation of cord blood pluripotent stem cells (characterized with our unique triple immunocytochemisty scheme for Oct-4, Sox-2 and Nanog) in defined serum-free culturing conditions. In this study we incorporated this protocol with 3-dimentional culturing systems which produced artificial neuronal tissues expressing Nestin, NF-200, TUJ1, PSD-95 and NeuN. We showed that cord blood pluripotent stem cells are a potential and promising candidate for future neural tissue engineering and regenerative medicine.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

69

Numer

1

Opis fizyczny

p.11-23,fig.,ref.

Twórcy

autor
  • Cell Therapy Research Institute CTI-LYON, Parc Technologique de Lyon-Saint Priest, Saint Priest, France
  • Newcastle Centre for Cord Blood, North East England Stem Cell Institute and Institute of Human Genetics, Centre for Life, Newcastle upon Tyne, U.K.
autor
  • Cell Therapy Research Institute CTI-LYON, Parc Technologique de Lyon-Saint Priest, Saint Priest, France
  • Newcastle Centre for Cord Blood, North East England Stem Cell Institute and Institute of Human Genetics, Centre for Life, Newcastle upon Tyne, U.K.
autor
  • Cell Therapy Research Institute CTI-LYON, Parc Technologique de Lyon-Saint Priest, Saint Priest, France
autor
  • Cell Therapy Research Institute CTI-LYON, Parc Technologique de Lyon-Saint Priest, Saint Priest, France

Bibliografia

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-956.
  • Boyer LA, Mathur D, Jaenisch R (2006) Molecular control of pluripotency. Curr Opin Genet Dev 16: 455-462.
  • Brannvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K (2007) Enhanced neu­ronal differentiation in a three-dimensional collagen- hyaluronan matrix. J Neurosci Res 85: 2138-2146.
  • Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska- Janik K (2002) Human cord blood-derived cells attain neu­ronal and glial features in vitro. J Cell Sci 115: 2131-2138.
  • Cauffman G, Liebaers I, Van Steirteghem A, Van de Velde H (2005) POU5F1 isoforms show different expression pat­terns in human embryonic stem cells and preimplantation embryos. Stem Cells 24: 2685-2691.
  • Chen N, Hudson JE, Walczak P, Misiuta I, Garbuzova-Davis S, Jiang L, Sanchez-Ramos J, Sanberg PR, Zigova T, Willing AE (2005) Human umbilical cord blood progeni­tors: the potential of these hematopoietic cells to become neural. Stem Cells 23: 1560-1570.
  • Corselli M, Parodi A, Mogni M, Sessarego N, Kunkl A, Dagna-Bricarelli F, Ibatici A, Pozzi S, Bacigalupo A, Frassoni F, Piaggio G (2008) Clinical scale ex vivo expansion of cord blood-derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations. Exp Hematol 36: 340-349.
  • Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG, Copland JA, Forraz N, McGuckin C, Urban R (2007) Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif 40: 367-380.
  • Domanska-Janik K, Habich A, Sarnowska A, Janowski M (2006) Neural commitment of cord blood stem cells (HUCB-NSC/NP): therapeutic perspectives. Acta Neurobiol Exp (Wars) 66: 279-291.
  • Ende M, Ende N (1972) Hematopoietic transplantation by means of fetal (cord) blood. A new method. Va Med Mon (1918) 99: 276-280.
  • Fujioka T, Fujioka A, Duman RS (2004) Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci 24: 319-328.
  • Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, et al. (1989) Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical- cord blood from an HLA-identical sibling. N Engl J Med 321: 1174-1178.
  • Gremo F, Presta M (2000) Role of fibroblast growth factor-2 in human brain: a focus on development. Int J Dev Neurosci 18: 271-279.
  • Hata Y, Takai Y (1999) Roles of postsynaptic density-95/syn- apse-associated protein 90 and its interacting proteins in the organization of synapses. Cell Mol Life Sci 56: 5-6.
  • Henion PD, Weston JA (1994) Retinoic acid selectively pro­motes the survival and proliferation of neurogenic precur­sors in cultured neural crest cell populations. Dev Biol 161: 243-250.
  • Ju YE, Janmey PA, McCormick ME, Sawyer ES, Flanagan LA (2007) Enhanced neurite growth from mammalian neurons in three-dimensional salmon fibrin gels. Biomaterials 28: 2097-2108.
  • Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H., Lukomska B, Buzanska L, Domanska-Janik K (2006) Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term cul­ture conditions. J Neurosci Res 83: 627-637.
  • Lee MW, Moon YJ, Yang MS, Kim SK, Jang IK, Eom YW, Park JS, Kim HC, Song KY, Park SC, Lim HS, Kim YJ (2007) Neural differentiation of novel multipotent pro­genitor cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 358: 637-643.
  • Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11: 228-232.
  • McGuckin C, Forraz N, Baradez MO, Basford C, Dickinson AM, Navran S, Hartgerink JD (2006) Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp (Wars) 66: 321-329.
  • McGuckin C, Jurga M, Ali H, Strbad M, Forraz N (2008) Culture of embryonic-like stem cells from human umbili­cal cord blood and onward differentiation to neural cells in vitro. Nat Protoc 3: 1046-1055.
  • McGuckin CP, Forraz N (2008) Potential for access to embryonic-like cells from human umbilical cord blood. Cell Prolif 41 (Suppl 1): 31-40.
  • McGuckin CP, Forraz N, Allouard Q, Pettengell R (2004) Umbilical cord blood stem cells can expand hematopoi­etic and neuroglial progenitors in vitro. Exp Cell Res 295: 350-359.
  • Messam CA, Hou J, Berman JW, Major EO (2002) Analysis of the temporal expression of nestin in human fetal brain derived neuronal and glial progenitor cells. Brain Res Dev Brain Res 134: 87-92.
  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201-211.
  • Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 63: 71-124.
  • Nakagawa S, Kim JE, Lee R, Malberg JE, Chen J, Steffen C Zhang YJ, Nestler EJ, Duman RS (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22: 3673-3682.
  • Nelson AD, Suzuki M, Svendsen CN (2008) A high concen­tration of epidermal growth factor increases the growth and survival of neurogenic radial glial cells within human neurosphere cultures. Stem Cells 26: 348-355.
  • Noll E, Miller RH (1994) Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord. Development 120: 649-660.
  • Slatter MA, Bhattacharya A, Flood TJ, Abinun M, Cant AJ, Gennery AR (2006) Use of two unrelated umbilical cord stem cell units in stem cell transplantation for Wiskott- Aldrich syndrome. Pediatr Blood Cancer 47: 332-334.
  • Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH (2007) In Vivo Fate Analysis Reveals the Multipotent and Self-Renewal Capacities of Sox2(+) Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell 1: 515-528.
  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287: 1427-1430.
  • Watt SM, Contreras M (2005) Stem cell medicine: umbilical cord blood and its stem cell potential. Semin Fetal Neonatal Med 10: 209-220.
  • Wuarin L, Sidell N, de Vellis J (1990) Retinoids increase perinatal spinal cord neuronal survival and astroglial dif­ferentiation. Int J Dev Neurosci 8: 317-326.
  • Xiao S, McLean J, Robertson J (2006) Neuronal intermedi­ate filaments and ALS: a new look at an old question. Biochim Biophys Acta 1762: 1001-1012.
  • Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2: 185-190.
  • Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363: 2079-2087.
  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132: 645-660.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-372c4b5f-afed-4606-97f3-61e2044837a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.