PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 3 |

Tytuł artykułu

Dexamethasone induces alterations of slow wave oscillation, rapid eye movement sleep and high‑voltage spindle in rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Glucocorticoids arising from chronic stress and long‑term inflammatory treatment with corticosteroids are both associated with neuropathology and cognitive impairments. Many previous studies have focused on changes in brain morphology and deficits in learning behavior. However, effects of long‑term exposure to stress hormones on electrical brain signaling and sleep‑wake patterns have remained largely unexplored. This study aimed to monitor electroencephalographic (EEG) patterns induced by prolonged dexamethasone exposure. Adult male Wistar rats implanted with electrodes on the skull over the frontal and parietal cortices were intraperitoneally injected with either saline or dexamethasone (0.5 mg/kg) once daily for 21 consecutive days. Longitudinal EEG recording was performed on day 6, 11, 16 and 21. Fast Fourier transform was used for frequency power analysis. One‑way ANOVA revealed significant increases in parietal EEG power of slow frequencies (delta, theta and alpha) particularly, with the dominant theta activity seen as early as day 11 of dexamethasone treatment. Sleep‑wake analysis on day 21 confirmed a significant reduction of rapid‑eye movement (REM) sleep and increased slow frequency oscillations mainly in the parietal cortex during the awake period. The number of high‑voltage spindles (HVSs) (6‑10 Hz EEG oscillation) was significantly increased during awake and slow wave sleep (SWS) periods following dexamethasone treatment. These findings demonstrated that distinct frequency oscillations, sleep‑wakefulness and sleep spindles may be parameters of neuropathology produced by long‑term dexamethasone exposure. Early detection of these parameters might be predictive of neuropathology in long‑term corticosteroid users.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

3

Opis fizyczny

p.251-260,fig.,ref.

Twórcy

autor
  • Department of Physiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
  • Research Unit for EEG Biomarkers of Neuronal Diseases, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
autor
  • Department of Physiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
  • Research Unit for EEG Biomarkers of Neuronal Diseases, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
  • Department of Physiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
autor
  • Department of Physiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
  • Research Unit for EEG Biomarkers of Neuronal Diseases, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
  • Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
  • Research Unit for EEG Biomarkers of Neuronal Diseases, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
autor
  • Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
  • Research Unit for EEG Biomarkers of Neuronal Diseases, Faculty of Science, Prince of Songkla University, Songkhla, Thailand

Bibliografia

  • Celesia GG, Jasper HH (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16: 1053–1063.
  • Cheaha D, Sawangjaroen K, Kumarnsit E (2014) Characterization of fluoxetine effects on ethanol withdrawal‑induced cortical hyperexcitability by EEG spectral power in rats. Neuropharmacology 77: 49–56.
  • Choksi A, Sarojini KV, Vadnal P, Dias C, Suresh PK, Khandare J (2013) Comparative anti‑inflammatory activity of poly (amidoamine) (PAMAM) dendrimer‑dexamethasone conjugates with dexamethasone‑liposomes. Int J Pharm 449: 28–36.
  • Christos GA (1993) Is Alzheimer’s disease related to a deficit or malfunction of rapid eye movement (REM) sleep? Med Hypotheses 41: 435–439.
  • Clark LD, Bauer W, Cobb S (1952) Preliminary observations on mental disturbances occurring in patients under therapy with cortisone and ACTH. N Engl J Med 246: 205–216.
  • Coben LA, Danziger WL, Berg L (1983) Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalogr Clin Neurophysiol 55: 372–380.
  • Dringenberg HC (2000) Alzheimer’s disease: more than a ‘cholinergic disorder’ ‑ evidence that cholinergic‑monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 115: 235–249.
  • Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/beta‑amyloid ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64: 343–349.
  • Gagnon JF, Bedard MA, Fantini ML, Petit D, Panisset M, Rompre S, Carrier J, Montplaisir J (2002) REM sleep behavior disorder and REM sleep without atonia in Parkinson’s disease. Neurology 59: 585–589.
  • Gao J, Lin H, Wang XJ, Song ZG, Jiao HC (2010) Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poult Sci 89: 318–327.
  • Garraux G, Phillips C, Schrouff J, Kreisler A, Lemaire C, Degueldre C, Delcour C, Hustinx R, Luxen A, Destee A, Salmon E (2013) Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes. Neuroimage Clin 2: 883–893.
  • Ge S, Yang C, Li  M, Li J, Chang X, Fu J, Chen  L, Chang C, Wang X, Zhu J, Gao G (2012) Dopamine depletion increases the power and coherence of high‑voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res 1465: 66–79.
  • Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ (2014) Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol 261: 1939–1948.
  • Guijarro C, Rutz S, Rothmaier K, Turiault M, Zhi Q, Naumann T, Frotscher M, Tronche F, Jackisch R, Kretz O (2006) Maturation and maintenance of cholinergic medial septum neurons require glucocorticoid receptor signaling. J Neurochem 97: 747–758.
  • Hubain PP, Staner  L, Dramaix  M, Kerkhofs  M, Papadimitriou G, Mendlewicz J, Linkowski P (1998) The dexamethasone suppression test and sleep electroencephalogram in nonbipolar major depressed inpatients: a multivariate analysis. Biol Psychiatry 43: 220–229.
  • Harfstrand A, Fuxe K, Cintra A, Agnati LF, Zini I, Wikstrom AC, Okret S, Yu ZY, Goldstein M, Steinbusch H (1986) Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc Natl Acad Sci 83: 9779–9783.
  • Helkala EL, Hanninen T, Hallikainen  M, Kononen  M, Laakso MP, Hartikainen P, Soininen H, Partanen J, Partanen K, Vainio P, Riekkinen P Sr (1996) Slow‑wave activity in the spectral analysis of the electroencephalogram and volumes of hippocampus in subgroups of Alzheimer’s disease patients. Behav Neurosci 110: 1235–1243.
  • Hu TJ, Shuai XH, Chen JR, Wei YY, Zheng RL (2009) Protective effect of a Potentilla anserine polysaccharide on oxidative damages in mice. Int J Biol Macromol 45: 279–283.
  • Issuriya A, Kumarnsit E, Wattanapiromsakul C, Vongvatcharanon U (2014) Histological studies of neuroprotective effects of Curcuma longa Linn. on neuronal loss induced by dexamethasone treatment in the rat hippocampus. Acta Histochem 116: 1443–1453.
  • Itil TM (1983) The discovery of antidepressant drugs by computer‑analyzed human cerebral bio‑electrical potentials (CEEG). Prog Neurobiol 20: 185–249.
  • Jackson CE, Snyder PJ (2008) Electroencephalography and event‑related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimers Dement 4: S137–S143.
  • Jafari Z, Kolb BE, Mohajerani MH (2018) Chronic traffic noise stress accelerates brain impairment and cognitive decline in mice. Experimental Neurology 308: 1–2.
  • Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115: 1490–1505.
  • Ju YE, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, Morris  JC, Holtzman  M (2013) Sleep quality and preclinical Alzheimer disease. JAMA Neurol 70: 587–593.
  • Kanai T, Szerb JC (1965) Mesencephalic reticular activating system and cortical acetylcholine output. Nature 205: 80–82.
  • Kraaij MD, van der Kooij SW, Reinders ME, Koekkoek K, Rabelink TJ, Van KC, Gelderman KA (2011) Dexamethasone increases ROS production and T cell suppressive capacity by anti‑inflammatory macrophages. Mol Immunol 49: 549–557.
  • Kwak YT (2006) Quantitative EEG findings in different stages of Alzheimer’s disease. J Clin Neurophysiol 23: 456–461.
  • Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG, Hasselmo ME, Potts GF, Shenton ME, Mc Carley RW (1999) Gamma frequency‑range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 56: 1001–1005.
  • Laske C (2014) Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N Engl J Med 370: 1459.
  • Leggas M, Kuo KL, Robert F, Cloud G, deShazo M, Zhang R, Li M, Wang H, Davidson S, Rinehart J (2009) Intensive anti‑inflammatory therapy with dexamethasone in patients with non‑small cell lung cancer: effect on chemotherapy toxicity and efficacy. Cancer Chemother Pharmacol 63: 731–743.
  • Lupien SJ, Fiocco A, Wan N, Maheu F, Lord C, Schramek T, Tu MT (2005) Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 30: 225–242.
  • Lupien SJ, Gillin CJ, Hauger RL (1999) Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose‑response study in humans. Behav Neurosci 113: 420–430.
  • Maestri M, Carnicelli L, Tognoni G, Di CE, Giorgi FS, Volpi L, Economou NT, Ktonas P, Ferri R, Bonuccelli U, Bonanni E (2015) Non‑rapid eye movement sleep instability in mild cognitive impairment: a pilot study. Sleep Med 16: 1139–1145.
  • Marini G, Ceccarelli P, Mancia M (2008) Characterization of the 7–12 Hz EEG oscillations during immobile waking and REM sleep in behaving rats. Clin Neurophysiol 119: 315–320.
  • Minasyan GR, Chatten JB, Chatten MJ, Harner RN (2010) Patient‑specific early seizure detection from scalp electroencephalogram. J Clin Neurophysiol 27: 163–178.
  • Mizuno S, Kameda A, Inagaki T, Horiguchi J (2004) Effects of donepezil on Alzheimer’s disease: the relationship between cognitive function and rapid eye movement sleep. Psychiatry Clin Neurosci 58: 660–665.
  • Mutsaers HA, Tofighi R (2012) Dexamethasone enhances oxidative stress‑induced cell death in murine neural stem cells. Neurotox Res 22: 127–137.
  • Prichep LS, John ER, Ferris SH, Reisberg B, Almas  M, Alper K, Cancro R (1994) Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol Aging 15: 85–90.
  • Riekkinen P Jr, Jakala P, Sirvio J, Koivisto E, Miettinen R, Riekkinen P (1991) The effects of THA on scopolamine and nucleus basalis lesion‑induced EEG slowing. Brain Res Bull 26: 633–637.
  • Schafer SC, Wallerath T, Closs EI, Schmidt C, Schwarz PM, Forstermann U, Lehr HA (2005) Dexamethasone suppresses eNOS and CAT‑1 and induces oxidative stress in mouse resistance arterioles. Am J Physiol Heart Circ Physiol 288: H436‑H444.
  • Schneider F, Baldauf K, Wetzel W, Reymann KG (2014) Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 135: 25–33.
  • Selden NR, Gitelman DR, Salamon‑Murayama N, Parrish TB, Mesulam MM (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121: 2249–2257.
  • Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17: 1060–1065.
  • Sellebjerg F, Christiansen M, Nielsen PM, Frederiksen JL (1998) Cerebrospinal fluid measures of disease activity in patients with multiple sclerosis. Mult Scler 4: 475–479.
  • Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115: 117–141.
  • Snyder SM, Hall JR (2006) A meta‑analysis of quantitative EEG power associated with attention‑deficit hyperactivity disorder. J Clin Neurophysiol 23: 440–455. Staner  L, Cornette F, Maurice D, Viardot G, Le Bon O, Haba J, Staner C, Luthringer R, Muzet A, Macher JP (2003) Sleep microstructure around sleep onset differentiates major depressive insomnia from primary insomnia. J Sleep Res 12: 319–330.
  • Toth A, Hajnik T, Detari L (2012) Cholinergic modulation of slow cortical rhythm in urethane‑anesthetized rats. Brain Res Bull 87: 117–129.
  • Toyn J (2015) What lessons can be learned from failed Alzheimer’s disease trials? Expert Rev Clin Pharmacol 8: 267–269.
  • Tranah GJ, Black well T, Stone KL, Ancoli‑Israel S, Paudel ML, Ensrud KE, Cauley JA, Redline S, Hillier TA, Cummings SR, Yaffe K (2011) Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann Neurol 70: 722–732.
  • Uhlhaas PJ, Haenschel C, Nikolic D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34: 927–943.
  • Wisor JP, Edgar DM, Yesavage J, Ryan HS, Mc Cormick CM, Lapustea N, Murphy GM Jr (2005) Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer’s disease: a  role for cholinergic transmission. Neuroscience 131: 375–385.
  • Yang C, Ge SN, Zhan JR, Chen L, Yan ZQ, Heng LJ, Zhao TZ, Li WX, Jia D, Zhu JL, Gao GD (2013) Systemic blockade of dopamine D2‑like receptors increases high‑voltage spindles in the globus pallidus and motor cortex of freely moving rats. PLoS One 8: e64637.
  • Yang C, Zhang JR, Chen L, Ge SN, Wang JL, Yan ZQ, Jia D, Zhu JL, Gao GD (2015) High frequency stimulation of the STN restored the abnormal high‑voltage spindles in the cortex and the globus pallidus of 6‑OHDA lesioned rats. Neurosci Lett 595: 122–127.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-353b1ae2-3bdf-4683-8896-c9fb6a56d265
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.