PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 74 | 09 |

Tytuł artykułu

Zmienność zanieczyszczenia mikrobiologicznego mięsa ślimaków jadalnych w zależności od gatunku i miejsca ich pozyskania

Warianty tytułu

EN
Variability of microbial contamination of edible snail meat depending on species and place of their collection

Języki publikacji

PL

Abstrakty

EN
The objective of the research was to determine the microbiological status of raw and frozen (cooked) snail meat obtained from both free-living and farmed edible snails. The research material comprised meat samples (10 g each) collected from three snail species, i.e. Roman snail (Helix pomatia – HP), small brown garden snail (Cornu aspersum aspersum – CAA) and large brown garden snail (Cornu aspersum maxima – CAM). Roman snails were collected in their natural environment in Greater Poland Voivodeship (region A: HPA) and Lower Silesian Voivodeship (region B: HPB). The Cornu genus snails were obtained from two different heliciculture farms in Greater Poland Voivodeship (farm A: CAAA and CAMA) and Lower Silesian Voivodeship (farm B: CAAB and CAMB). In both farms, snails were maintained under the mixed rearing system. Raw meat samples, taken from the edible portion of snails, that is, the foot with the collar and a fragment of the mantle, were obtained after the snails had been sacrificed in the laboratory. Frozen meat samples came from a snail meat processing facility. The samples were analyzed to determine the total aerobic bacterial count and the counts of Enterobacteriaceae, Escherichia coli, Enterococcus, Staphylococcus, Pseudomonas and Aeromonas, as well as psychotropic and proteolytic bacteria counts. Proteolytic bacteria were counted according to appropriate methodology, whereas the counts of other groups of microorganisms were obtained in accordance with the Polish Standards. Bacterial contamination levels (expressed as log cfu/g) were analyzed using the Statistica software (version 10.0). All values are presented as means and standard deviations. The total aerobic bacteria counts for HPA, HPB, CAAA, CAMA, CAAB and CAMB samples were, respectively, 5.78, 5.10, 6.00, 6.55, 5.12 and 5.21 log cfu/g in the case of raw meat, and 4.59, 4.75, 4.60, 5.13, 4.25 and 4.68 log cfu/g in the case of frozen meat. It was found that bacteria from the Enterobacteriaceae family were prevalent in both raw and frozen snail meat. The percentage of contaminated samples oscillated between 73.3% (HPB and CAMB) and 96.7% (CAAA and CAAB) for raw meat and between 20% (CAAA) and 100% (CAMA) for frozen meat. The quantitative contamination of raw meat with Enterobacteriaceae varied from 2.54 (HPB) to 4.75 log cfu/g (CAAA) and was higher by 1.0 to almost 2.0 log in farm snail meat as compared to Roman snail meat. The quantitative contamination of frozen meat was lower, ranging from 0.5 (HPA, CAAA and CAMA) to 1.65 log cfu/g (CAMB). All samples of raw and frozen snail meat were free from E. coli (contamination below 1 log cfu/g). In the raw snail meat, enterococci were recovered from 3 (10%) HPA, 6 (20%) HPB, 9 (30%) CAAA, 18 (60%) CAMA, 6 (20%) CAAB and 17 (56.6%) CAMB samples. The contamination levels for HPA, HPB, CAAA, CAMA, CAAB and CAMB raw meat samples were, respectively, 0.3, 0.63, 0.42, 2.0, 0.66 and 1.57 log cfu/g. In the frozen snail meat, enterococci were detected in 13 (43.3%) HPA, 13 (43.3%) HPB, 6 (20%) CAAA, 16 (53.3%) CAMA, 1 (3.3%) CAAB and 10 (30%) CAMB samples. The contamination level was similar for all kinds of samples, ranging between 0.48 (CAAA) and 2.11 log cfu/g (CAMA). The percentages of raw and frozen meat samples contaminated with staphylococci were similar, ranging from 50% (HPA) to 86.7% (CAAB) for raw meat and from 50% (HPA) to 100% (CAAA, CAMA and CAMB) for frozen meat. Quantitative contamination levels were also similar, oscillating between 1.48 (HPA) and 2.84 log cfu/g (CAMB) for raw meat and between 1.89 (HPA) and 3.28 log cfu/g (CAMA) for frozen meat. The percentage of samples contaminated with psychotrophic bacteria was also similar for raw and frozen snail meat, varying from 90% to 100%. Quantitative contamination with these bacteria oscillated between 3.17 (HPB) and 5.53 log cfu/g (CAMA) for raw meat and between 2.95 (HPA) and 4.12 log cfu/g (CAMA) for frozen meat. Bacteria from the Pseudomonas genus were confirmed in 63.3% of raw meat samples, in which the contamination level ranged from 2.22 (HPA) to 4.15 log cfu/g (CAAA), and in 96.7% of frozen meat samples, which contained from 1.12 (CAMA) to 2.21 log cfu/g (HPB) of these microorganisms. In raw meat, bacteria from Aeromonas genus were identified in all HPA samples as well as in 29 (96.7%) HPB, 26 (86.7%) CAAA, 21 (70%) CAMA, 29 (96.7%) CAAB and 17 (56.7%) CAMB samples. These bacteria were also present in a similar proportion of frozen meat samples (46.7-100%). The contamination level for raw meat samples oscillated between 2.74 (CAMB) and 4.73 log cfu/g (CAAA), whereas for frozen meat samples, it was substantially lower, ranging between 1.14 (CAMA) and 2.58 log cfu/g (CAAB). Proteolytic microbes were isolated more frequently from frozen snail meat. The percentage of contaminated samples varied from 80% (HPB and CAAA) to 100% (the rest) for frozen meat and from 36.7% (CAMA) to 93.3% (CAMB) for raw meat. The quantitative contamination level for frozen meat ranged from 3.17 (CAAA) to 4.44 log cfu/g (CAMA) and was generally lower than in the raw meat, where it varied between 2.07 (HPA) and 4.90 log cfu/g (CAMA). Snail meat is characterized by a high level of total microbiological contamination. The species of snails and the place where they live are often significant factors determining the level of contamination, which is higher in farm snail meat than in Roman snail meat. Heat treatment reduced the counts of bacteria found in raw meat. The increase in the number of staphylococci and enterococci in frozen meat (statistically significant only for staphylococci in snail meat from farm A) suggests the possibility of a secondary contamination of heat-treated meat. Therefore, a necessary condition for obtaining a safe and durable product is absolute compliance by the staff with appropriate procedures for hand hygiene and proper handling of food during production.

Wydawca

-

Rocznik

Tom

74

Numer

09

Opis fizyczny

s.591-598,tab.,bibliogr.

Twórcy

  • Katedra Higieny Żywności Zwierzęcego Pochodzenia, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
autor
  • Katedra Higieny Żywności Zwierzęcego Pochodzenia, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
autor
  • Katedra Higieny Żywności Zwierzęcego Pochodzenia, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
  • Katedra Higieny Żywności Zwierzęcego Pochodzenia, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
autor
  • Katedra Higieny Żywności Zwierzęcego Pochodzenia, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
autor
  • Katedra Higieny Żywności Zwierzęcego Pochodzenia, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin

Bibliografia

  • Adegoke A. A., Bukola A.-T. C., Comfort I. U., Olainka A. A., Amos K. O.: Snails as meat source: Epidemiological and nutritional perspectives. J. Microbiol. Antymicrob. 2010, 2, 001-005.
  • Barker G. M. (red.): The Biology of Terrestrial Molluscs. Chapter 6: Food and feeding behaviour. CABI Publishing Wallingford, Oxon 2001, s. 263 (259-288).
  • Burbianka M., Pliszka A., Burzyńska H.: Mikrobiologia żywności. PZWL, Warszawa 1983, s. 274-275 i 465.
  • Cicero A., Giangrosso G., Cammilleri G., Macaluso A., Currò V., Galuppo L., Vargetto D., Vicari D., Ferrantelli V.: Microbiological and chemical analysis of land snails commercialised in Sicily. Ital. J. Food Safety 2015, 4:4196, 66-68; doi: 10.4081/ijfs.2015.4196.
  • Cirlan A. F.: Researches regarding the bacterial and mycotical of the food snails and its sanitary-veterinary semnificance. Universitatea de Ştiinţe Agricole şi Medicină Veterinară “Ion Ionescu de la Brad”, Facultatea de Medicină Veterinară. Praca dokt., Jassy, Rumunia 2011.
  • David O. M., Ayeni S. K., Akinmoji O. P., Igbalajobi A.: Incidence of antibiotic-resistant enterococci in three edible land snails consumed in Nigeria. Wayamba J. Anim. Sci. 2012, 4, 270-274.
  • Dufour A. P, Strickland E. R., Cabelli V. J.: Membrane filter method for enumerating Escherichia coli. Appl. Environ. Microbiol. 1981, 41, 1152-1158.
  • Ezeama C. F., Efiuvwevwere B. J. O.: Microbiological assessment of freshwater snail (Pila ovata) and their different habitat locations and the physico-chemical qualities of the habitats. As. J. Microbiol. Biotech. Environ. Sci. 2007, 9, 469-475.
  • Gruyal V. B.: Microbial Level and Pesticide Residues of Pomacea canaliculata (Golden Snail): Basis for Potential Food Consumption. Int. J. Sci. Clin. Lab. 2013, 4, 42-60.
  • Novakovic B., Gruijc R.: Importance of adequate hand hygiene of food handlers in snails meat processing. J. Hyg. Eng. Des. 2017, 21, 23-28.
  • Nwiyi P., Amaechi N.: Prevalence of enteric bacteria isolates from aquarium snails (Ampullaria spp.) in Abia State, Nigeria. Online J. Anim. Feed Res. 2013, 3, 77-79.
  • Nyoagbe L. A., Appiah V., Nketsia-Tabiri J., Larbi D., Adjei I.: Evaluation of African giant snails (Achatina and Archachatina) obtained from markets (wild) and breeding farms. Afr. J. Food Sci. 2016, 10, 94-104; doi: 10.5897/AJFS2015.1320.
  • Obi S. K. C., Nzeako B. C.: Salmonella, Arizona, Shigella and Aeromonas isolated from the snail Achatina achatina in Nigeria. Antonie van Leeuwenhoek 1980, 46, 475-481.
  • Parlapani F. F., Neofitou Ch., Boziaris I. S.: Microbiological quality of raw and processed wild and cultured edible snails. J. Sci. Food Agric. 2014, 94, 768-772.
  • Pin C., Marin M. L., Garcia M. L., Tormo J., Casas C.: Comparison of different media for the isolation and enumeration of Aeromonas spp in foods. Lett. Appl. Microbiol. 1994, 18, 190-192.
  • PN-94-A-82055-7:1997 Mięso i przetwory mięsne – Badania mikrobiologiczne – Wykrywanie obecności i oznaczanie liczby enterokoków.
  • PN-EN ISO 13720:2010 Mięso i przetwory mięsne – Oznaczanie liczby przypuszczalnych Pseudomonas sp.
  • PN-EN ISO 4833:2004 Mikrobiologia żywności i pasz – Horyzontalna metoda oznaczania liczby drobnoustrojów– Metoda płytkowa w temperaturze 30 stopni C.
  • PN-EN ISO 6887-1:2000 Mikrobiologia żywności i pasz – Przygotowanie próbek. zawiesiny wyjściowej i rozcieńczeń dziesięciokrotnych do badań mikrobiologicznych – Część 1: Ogólne zasady przygotowania zawiesiny wyjściowej i rozcieńczeń dziesięciokrotnych.
  • PN-EN ISO 6887-3:2005 Mikrobiologia żywności i pasz – Przygotowanie próbek. zawiesiny wyjściowej i rozcieńczeń dziesięciokrotnych do badań mikrobiologicznych – Część 3: Specyficzne zasady przygotowania ryb i przetworów rybnych.
  • PN-EN ISO 6888-1:2001 Mikrobiologia żywności i pasz – Horyzontalna metoda oznaczania liczby gronkowców koagulazo-dodatnich (Staphylococcus aureus i innych gatunków) – Część 1: Metoda z zastosowaniem pożywki agarowej Baird-Parkera.
  • PN-EN ISO 7218:2008 Mikrobiologia żywności i pasz – Wymagania ogólne i zasady badań mikrobiologicznych.
  • PN-ISO 16649-2:2004 Mikrobiologia żywności i pasz – Horyzontalna metoda oznaczania liczby beta-glukuronidazo-dodatnich Escherichia coli – Część 2: Metoda płytkowa w temperaturze 44 stopni C z zastosowaniem 5-bromo-4-chloro-3-indolilo beta-D-glukuronidu.
  • PN-ISO 17410:2004 Mikrobiologia żywności i pasz – Horyzontalna metoda oznaczania liczby drobnoustrojów psychrotrofowych.
  • PN-ISO 21528-2:2005 Mikrobiologia żywności i pasz – Horyzontalna metoda wykrywania i oznaczania liczby Enterobacteriaceae – Część 2: Metoda płytkowa.
  • Rozporządzenie Komisji (WE) Nr 2073/2005 w sprawie kryteriów mikrobiologicznych dotyczących środków spożywczych – Dz. Urz. L Nr 338 z 22.12.2005 r., s. 1.
  • Rozporządzenie Ministra Środowiska z dnia 12 października 2011 r. w sprawie ochrony gatunkowej zwierząt – Dz. U. z 2011 r. Nr 237 poz. 1419.
  • Rozporządzenie Ministra Środowiska z dnia 6 października 2014 r. w sprawie ochrony gatunkowej zwierząt – Dz. U. z 2014 r. poz. 1348.
  • Temelli S., Dokuzulu C., Cem Sen M. K.: Determination of microbiological contamination sources during frozen snail meat processing stages. Food Control 2006, 17, 22-29.
  • Walczak Z., Czerwińska E.: Microbiological meat safety of edible snails (Helix pomatia) gathered from natural habitat. Probl. Hig. Epidemiol. 2013, 94, 853-856.
  • Walczak Z., Czerwińska E.: Ocena jakości mikrobiologicznej mięsa ślimaków (Helix aspersa Müller) po wstępnym przetworzeniu oraz jej zmiany w trakcie przechowywania zamrażalniczego. Zesz. Probl. Post. Nauk Rol. 2011, 569, 285-292.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-34f08e65-a199-4311-8705-aef7216a8be7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.