PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 12 | 2 |

Tytuł artykułu

A six-week diet high in fat, fructose and salt and its influence on lipid and mineral status, in rats

Autorzy

Warianty tytułu

Wpływ sześciotygodniowej diety z dużą zawartością tłuszczu, fruktozy i soli na gospodarkę lipidową oraz mineralną u szczurów

Języki publikacji

EN

Abstrakty

EN
Introduction. Fat, fructose, and salt consumption has increased in industrialized countries, but there are few studies that have investigated the effect of this eating pattern on metabolic and physiological States. The purpose of this study was thus to assess lipid and carbohydrate metabolism and to estimate iron, zinc, copper, calcium, and magnesium status in rats fed a diet high in fat, fructose, and salt, compared to the control diet. Material and methods. Wistar rats were assigned to groups fed either a standard diet or a diet high in fat, fructose, and salt (M). After 6 weeks, the animals were weighed and killed. Liver, kidney, heart, pancreas, hair, and blood samples were collected. The total cholesterol, triglyceride, fasting glucose, and insulin levels in serum were measured. The iron, zinc, copper, calcium, and magnesium concentrations in tissues and serum were determined. Results. It was found that the M diet led to a significant increase in cholesterol and triglyceride levels in the serum of rats. Among rats fed the M diet, a markedly higher serum level of iron and a significantly lower serum level of zinc were observed. A significantly lower iron level in the pancreas, zinc level in the kidneys and pancreas, and copper level in the kidneys it was found in rats with the M diet. The modified diet resulted in markedly lower concentrations of magnesium in the hearts. In the hair of rats on the M diet, higher levels of iron and zinc were observed. The relative masses of the kidneys were markedly higher in rats with the M diet, as compared with the C diet. Conclusions. Diets high in fat, fructose, and salt disturb lipid status and kidney mass. This modified diet impairs mineral balance in the body.
PL
Wstęp. Spożycie tłuszczu, fruktozy i soli wzrasta w krajach uprzemysłowionych. Jak dotąd jednak, w niewielu badaniach ocenia się wpływ tych nawyków żywieniowych na stan metaboliczny i fizjologiczny organizmu. Dlatego celem pracy była ocena metabolizmu lipidów i węglowodanów oraz określenie gospodarki żelaza, cynku, miedzi, wapnia i magnezu u szczurów karmionych dietą z dużą zawartością fruktozy, tłuszczu i soli w porównaniu ze szczurami na diecie standardowej. Materiał i metody. Szczury rasy Wistar podzielono na dwie grupy: pierwszą żywiono dietą standardową (C), drugą - dietą z dużą zawartością tłuszczu, fruktozy i soli (M). Po sześciu tygodniach doświadczenia zwierzęta były ważone i usypiane. Z ciała zwierząt pobrano wątrobę, nerki, serce, trzustkę, sierść oraz próbki krwi. W surowicy krwi oznaczono stężenie cholesterolu, triglicerydów, glukozy i insuliny. Zawartość żelaza, cynku, miedzi, wapnia i magnezu oznaczono w surowicy krwi oraz w tkankach. Wyniki. Stwierdzono, że dieta M spowodowała znaczący wzrost stężenia cholesterolu i triglicerydów w surowicy krwi szczurów. Ponadto u szczurów na diecie M obserwowano istotny wzrost stężenia żelaza i znaczące zmniejszenie stężenia cynku w surowicy. Wykazano znacząco mniejsze stężenie żelaza w trzustce, cynku - w nerkach i trzustce oraz miedzi - w nerkach szczurów na diecie M. Dieta modyfikowana wpłynęła na znaczące obniżenie magnezu w sercu szczurów. W sierści szczurów z dietą M zaobserwowano znacząco większe stężenie żelaza. Względna masa nerek szczurów na diecie M była znacząco większa aniżeli masa nerek szczurów na diecie C. Wnioski. Dieta z dużą zawartością tłuszczu, fruktozy i soli zaburza gospodarkę lipidową oraz względną masę nerek. Dieta modyfikowana prowadzi do zakłócenia równowagi składników mineralnych w organizmie.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

12

Numer

2

Opis fizyczny

p.195-202,ref.

Twórcy

  • Department of Hygiene and Human Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland

Bibliografia

  • Afkhami-Ardekani M., Karimi M., Mohammadi S.M., Nourani F., 2008. Effect of zinc sulfate supplementation on lipid and glucose in type 2 diabetic patients. Pakistan J. Nutr. 7 (4), 550-553.
  • Bonomo Lde F., Silva M., O1iveira Rde P., Silva M.E., Pedrosa M.L., 2012. Iron overload potentiates diet-induced hypercholesterolemia and reduces liver ppar-α expression in hamsters. J. Biochem. Mol. Toxicol. 26 (6), 224-229.
  • Bray G.A., 2012. Fructose and risk of cardiometabolic dis- ease. Curr. Atheroscler. Rep. 14, 570-578.
  • Bremer A.A., Stanhope K.L., Graham J.L., Cummings B.P., Wang W., Saville B.R., Havel P.J., 2011. Fructose-fed rhesus monkeys: A nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin. Transl. Sci. 4 (4), 243-252.
  • Briand F., Thiéblemont Q., Muzotte E., Sulpice T., 2012. High-fat and fructose intake induces insulin resistance, dyslipidemia, and liver steatosis and alters in vivo mac- rophage-to-feces reverse cholesterol transport in hamsters. J. Nutr. 142 (4), 704-709.
  • Busserolles J., Gueux E., Rock E., Mazur A., Rayssiguier Y., 2003. High fructose feeding of magnesium deficient rats is associated with increased plasma triglyceride concentration and increased oxidative stress. Mag. Res. 16(1), 7-12.
  • Chausmer A.B., 1998. Zinc, insulin and diabetes. J. Am. Coli. Nutr. 17(2), 109-115.
  • Chimienti F., Favier A., Seve M., 2005. ZnT-8, a pancreatic beta-cell-specific zinc transporter. Biometals 18 (4), 313-317.
  • Coate K.C., Kraft G., Lautz M., Smith M., Neal D.W., Cherrington A.D., 2011. A high-fat, high-fructose diet accelerates nutrient absorption and impairs net hepatic glucose uptake in response to a mixed meal in partially pancreatectomized dogs. J. Nutr. 141 (9), 1643-1651.
  • Cozma A.I., Sievenpiper J.L., de Souza R.J., Chiavaroli L., Ha V., Wang D.D., Mirrahimi A., Yu M.E., Carleton A.J., Di Buono M., Jenkins A.L., Leiter L.A., Wolever T.M., Beyene J., Kendall C.W., Jenkins D.J., 2012. Effect of fructose on glycemic control in diabetes: A systematic review and meta-analysis of controlled feeding trials. Diabetes Care 35 (7), 1611-1620.
  • Del Gobbo L.C., Song Y., Poirier P., Dewailly E., Elin R.J., Egeland G.M., 2012. Low serum magnesium concentrations are associated with a high prevalence of premature ventricular complexes in obese adults with type 2 diabetes. Cardiovasc. Diab. doi: 10.1186/1475- -2840-11-23.
  • Dishy V., Sofowora G.G., Imamura H., Nishimi Y., Xie H.G., Wood A.J., Stein C.M., 2003. Nitric oxide production decreases after salt loading but is not related to blood pressure changes omitric oxide-mediated vascular responses. J. Hypertens. 21 (1), 153-157.
  • Fonseca-Alaniz M.H., Takada J., Andreotti S., de Campos T.B.F., Campana A.B., Borges-Silva C.N., Lima F.B., 2008. High sodium intake enhances insulin-stimulated glucose uptake in rat epididymal adipose tissue. Obesity 16, 1186-1192.
  • Forman J.P., Scheven L., de Jong P.E., Bakker S.J., Curhan G.C., Gansevoort R.T., 2012. Association between sodium intake and change in uric acid, urine albumin ex- cretion, and the risk of developing hypertension. Circulation 26, 125 (25), 3108-3116.
  • Hao J., Liu S.X., Zhao S., Liu Q.J., Liu W., Duan H.J., 2012. High-fat diet causes increased serum insulin and glucose which synergistically lead to renal tubular lipid deposition and extracellular matrix accumulation. Br. J. Nutr. J. 107 (1), 74-85.
  • Holbrook J.T., Smith J.C. Jr, Reiser S., 1989. Dietary fructose or starch: effects on copper, zinc, iron, manganese, calcium, and magnesium balances in humans. Am. J. Clin. Nutr 49 (6), 1290-1294.
  • Hwang I., Yoon T., Kim C., Cho B., Lee S., Song M.K., 2011 Different roles of zinc plus arachidonic acid on insulin sensitivity between high fructose- and high fat- fed rats. Life Sci. 88 (5-6), 278-284.
  • Jacob RS., de Meneses Fujii T.M., Yamada M., Borges M.C., Pantaleao L.C., Borelli P., Fock R., Rogero M.M., 2011 Isocaloric intake of a high-fat diet promotes insulin resistance and inflammation in Wistar rats. Celi. Biochem. Funct. doi: 10.1002/cbf.2894.
  • Johnson R.J., Segal M.S., Sautin Y., Nakagawa T., Feig D.I., Kang D.H., Gersch M.S., 2007. Potential role of sugar (fructose) in the epidemie of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 86, 899-906.
  • Lima N.K., Tozetto D.J., Lima L.G., Nobre F., Moriguti J.C., Ferriolli E., Foss M.C., 2009. Salt and insulin sensitivity after short and prolonged high salt intake in elderly subjeets. Braz. J. Med. Biol. Res. 42 (8), 738-743.
  • Madero M., Perez-Pozo S., Jalal D., Johnson R.J., Sanchez- Lozada L.G., 2011. Dietary fructose and hypertension. Curr. Hypertens. Rep. 13, 29-35.
  • Manitius J., Baines A.D., Roszkiewicz A., 1995. The effect of high fructose intake on renal morphology and renal function in rats. J. Physiol. Pharmacol. 46, 179-183.
  • McCormick C.P., Rauch A.L., Buckalew V.M. Jr, 1989. Differential effect of dietary salt on renal growth in Dahl salt-sensitive and salt-resistant rats. Flypertension 13 (2), 122-127.
  • Minamiyama Y., Takemura S., Kodai S., Shinkawa H., Tsu- kioka T., Ichikawa H., Naito Y., Yoshikawa T., Okada S., 2010. Iron restriction improves type 2 diabetes mellitus in OtsukaLong-Evans Tokushima fatty rats. Am. J. Physiol. Endocrinol. Metab. 298, E1140-E1149.
  • Ohta Y., Tsuchihashi T., Kiyohara K., Oniki H., 2012. High salt intake promotes a decline in renal function in hypertensive patients: a 10-year observational study. Hypertens. Res. doi: 10.1038/hr.2012.155.
  • Pamidimukkala J., Jandhyala B.S., 2004. Effects of salt rich diet in the obese Zucker rats: studies on renal function during isotonic volume expansion. Clin. Exp. Hyper­tens. 26, 55-67.
  • Reuter S., Bussemaker E., Hausberg M., Pavenstadt H., Hillebrand U., 2009. Effect of excessive salt intake: role ofplasma sodium. Curr. Hypertens. Rep. 11 (2), 91-97.
  • Samuel V.T., 2011. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol. Metab. 22 (2), 60-65.
  • Silbemagel G., Lutjohann D., Machann J., Meichsner S., Kantartzis K., Schick F., 2012. Cholesterol synthesis is associated with hepatic lipid content and dependent on fructose/glucose intake in healthy humans. Exp. Diab. Res. doi: 10.1155/2012/361863.
  • Silbemagel G., Machann J., Unmuth S., Schick F., Stefan N., Haring H.U., Fritsche A., 2011. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. Br. J. Nutr. 106 (1), 79-86.
  • Sondergaard L.G., Stoltenberg M., Doering P., Flyvbjerg A., Rungby J., 2006. Zinc ions in the endocrine and exocrine panereas of zinc deficient rats. Histol. Histopathol. 21,619-625.
  • Song M., Schuschke D.A., Zhou Z., Chen T., Pierce W.M. Jr, Wang R., Johnson W.T., McClain C.J., 2012. High fructose feeding induces copper deficiency in Sprague- Dawley rats: a novel mechanism for obesity related fatty liver. J. Hepatol. 56 (2), 433-40.
  • Stanhope K.L., Havel P.J., 2009. Fructose consumption: considerations for future research on its effects on adipose distribution, lipid metabolism, and insulin sensitiv- ity in humans. J. Nutr. 139, 1236S-1241S.
  • Tsuchiya H., Ebata Y., Sakabe T., Hama S., Kogure K., Shiota G., 2013. High-fat, high-fructose diet induces hepatic iron overload via a hepcidin-independent mechanism prior to the onset of liver steatosis and insulin resistance in mice. Metabolism. 62 (1), 62-69.
  • Wapnir R.A., Devas G., 1995. Copper deficiency: interaction with high-fructose and high-fat diets in rats. Am. J. Clin. Nutr. 61,105-110.
  • Yilmaz R., Akoglu H., Altun B., Yildirim T., Arici M., Erdem Y., 2012. Dietary salt intake is related to inflammation and albuminuria in primary hypertensive patients. Eur. J. Clin. Nutr. 66 (11), 1214-1218.
  • Zaman M.Q., Leray V., Le Bloc‘h J., Thorin C., Ouguerram K., Nguyen P., 2011. Lipid profile and insulin sensitivity in rats fed with high-fat or high-fructose diets. Br. J. Nutr. 106 Suppl 1, S206-S210.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-32281250-d91c-4359-b0db-f6baec0b1233
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.