PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 19 | 5 |

Tytuł artykułu

Changes in iron(II) and iron(III) content in a solution of humic acids during coagulation by means of monomeric iron(III) salts

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study discusses the results of laboratory analyses investigating the chemical coagulation of a model of humic acid solution with the use of monomeric iron(III) salts – chloride and sulfate – in a standard coagulation test environment. The objective of the study was to determine changes in iron compound concentrations in the tested solution as a result of coagulation. The following parameters were analyzed in solution samples: changes in COD, colour, turbidity, suspended solids, pH, and streaming potential in relation to the applied coagulant dose. The content of total iron (Fetotal) and iron(II) was determined in solution samples after coagulation. The lowest Fetotal concentrations were observed following the use of optimal coagulant doses, and higher doses led to a repeated increase in total iron levels. In purified solution samples, iron(III) was partially reduced to iron(II) with an 8-42% share of Fetotal, depending on salt type and the applied dose.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

5

Opis fizyczny

p.1089-1093,fig.,ref.

Twórcy

autor
  • Department of Chemistry, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-757 Olsztyn, Poland
  • Department of Chemistry, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-757 Olsztyn, Poland

Bibliografia

  • 1. PEFFERKORN E. Structure and stability of natural organic matter/soil complexes and related synthetic and mixed analogues. Adv. Colloid Interface Sci., 73, 127, 1997.
  • 2. PULLIN J.M., CABANISS S. The effects of pH, ionic strength, and iron-fulvic acid interactions on the kinetics of nonphotochemical iron transformations. I. Iron(II) oxidation and iron(III) colloid formation. Geochimi. Cosmochim. Ac. 67, (21), 4067, 2003.
  • 3. KUNG K.-H., MCBRIDGE M.B. Coordination complexes of p-hydroxybenzoate on Fe oxides. Clay. Clay. Miner. 37, (4), 333, 1989.
  • 4. FENG W., NANSHENG D. Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A mini review. Chemosphere. 41, 1137, 2000.
  • 5. ŁOMOTOWSKI J. Theoretical background to the problem of iron-compound washout from the aquifer. Ochrona Środowiska. 4, (59), 9, 1995 [In Polish].
  • 6. WATT B. E., MALCOLM R.L., HAYES M. H. B., CLARK N. W. E, CHIPMAN J. K. Chemistry and potential muta-genicity of humic substances in waters from different watersheds in Britain and Ireland. Water Res. 30, (6), 1502, 1996.
  • 7. AMIRTHARAJAH A., O’MELIA Ch. R. Coagulation processes: destabilization, mixing and flocculation. Guide to selection of water treatment processes. Water Qality and Treatment. AWWA- 4th ed., pp. 269-365, 1990.
  • 8. HAHN H. H., EPPLER B., KLUTE R. Comparison of wastewater flocculation in jar test experiments, continuousflow reactors and large-scale plants. In: Chemistry of Wastewater Technology. Editor- Allan J. Rubin. Ann Arbor Science., pp. 245-261, 1980.
  • 9. JUNG A.V., CHANUDET V., GHANBAJA J., LARTIGES B.S., BERSILLON J.L. Coagulation of humic substances and dissolved organic matter with a ferric salt: An electron energy loss spectroscopy investigation. Water Res. 39, 3849, 2005.
  • 10. LIBECKI B., DZIEJOWSKI J. Optimization of Humic Acids Coagulation with Aluminum and Iron(III) Salts. Polish J. Environ. Stud. 17, (3), 397, 2008.
  • 11. PALLADINO G., FERRI D., MANFREDI C., VASCA E. Potentiometric determination of the total acidity of humic acids by constant-current coulometry, Anal. Chim. Acta 582, 164, 2007.
  • 12. APHA, AWWA and WEF Standard methods for examination of water and wastewater, 19th ed. Washington, 1995.
  • 13. HACH Dr/2000 Spectrophotometer Handbook, Manual Procedures, 1993.
  • 14. SCHILT A. S. Analytical Applications of 1,10-Phenantroline and Related Compounds. Oxford: Pergamon Press, 1969.
  • 15. FLYNN M. CH. Hydrolysis of inorganic iron(III) salts. Chem. Rev. 84, (1), 31, 1984.
  • 16. CHENG W. P. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution. Chemosphere 47, 963, 2002.
  • 17. DUAN J., GREGORY J. Coagulation by hydrolyzing metal salts. Adv. Colloid Interface. 100-102, 475, 2003.
  • 18. LIBECKI B., DZIEJOWSKI J. Interactions of aluminum and iron(III) salts with humic acids in a model alkaline solution. Polish J. Natur. Sc. 23, 681, 2008.
  • 19. KOWALSKI T. On the chemical parameters of water pollutants and their effect on the choice of coagulants. Ochrona Środowiska 4, (59), 3, 1995.
  • 20. WEBER T., ALLARD T., BENEDETTI M. F. Iron speciation in interaction with organic matter: Modelling and experimental approach. J. Geochem. Explor. 88, 166, 2006.
  • 21. NIEROP K. G. J., JANSEN B., VERSTRATEN J. M. Dissolved organic matter, aluminnium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition. Sci. Total Environ. 300, 201, 2002.
  • 22. STRUYK Z., SPOSITO G. Redox properties of standard humic acids. Geoderma 102, 329, 2001.
  • 23. CHEN J., GU B., ROYER R. A., BURGOS W. D. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci. Total Environ. 307, 167, 2003.
  • 24. CHEN Y., ZAHRAA O., BOUCHY M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photoch. Photobio. A 108, 37, 1997.
  • 25. FUKUSHIMA M., TATSUMI K. Light acceleration of iron(III) reduction by humic acid in the aqueous solution. Colloid. Surface. A 155, 249, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-30eedb2c-210b-4c5a-ae30-40a34f3cf2f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.