PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 70 | 12 |

Tytuł artykułu

Wpływ jadu pszczelego na aktywność CYP1A2

Warianty tytułu

EN
Effect of bee venom on CYP1A2 activity

Języki publikacji

PL

Abstrakty

EN
Bee venom is a complex mixture of substances of natural origin, whose therapeutic properties are used in many areas of medicine. Generally accepted procedures applied in the process of developing new drugs include tests that examine interactions between the new drug and the enzymes of the cytochrome P450 group (CYP450), which play a key role in the metabolism of xenobiotics and endogenous substances in mammals. The use of bee venom in the treatment of various diseases and in immunotherapy makes it necessary to test this material for its effect on the enzymes of the CYP450 group in order to prevent health-threatening interactions. The purpose of this paper was to investigate the effect of bee venom and its main component, melittin, on CYP1A2 enzyme activity. This enzyme plays an important role in the metabolism of many pharmaceuticals and toxins. This is the first study on the effect of bee venom on the activity of an enzyme of the CYP450 family. The CYP1A2/CEC High Throughput Inhibitor Screening Kit (BD Biosciences) was used in the study. The method was based on the measurement of fluorescence of the enzymatic reaction product (3-cyano-7- -hydroksycoumarin) formed by the action of the CYP1A2 on the substrate (3-cyano-7-ethoxycoumarin) in the presence of a potential inhibitor in various concentrations. Furafylline was used as a model inhibitor. Twenty samples of bee venom from different years and of different origin, as well as melittin, were analyzed. The tests were performed at 37°C in 96-well microplates with an Infinite M200 Pro (Tecan) microplate reader. Fluorescence measurement parameters were as follows: excitation – 410 nm, emission – 460 nm. On the basis on the results obtained, IC₅₀ values were calculated, which are equal to the concentrations of particular inhibitors causing the inhibition of enzyme activity by 50%. The IC₅₀ values against CYP1A2 for different samples of bee venom ranged from 0.13 µg/ml to 2.38 µg/ml (mean = 0.74 µg/ml). Comparison of the IC₅₀ values for bee venom and furafylline (1.53 µg/ml) demonstrates potent inhibitor properties of bee venom against CYP1A2. The fact that IC₅₀ values for different bee venom samples show a relatively high variability may be caused by composition differences between particular bee venom samples. The data obtained also indicate that melittin is a relatively weak inhibitor of CYP1A2 activity compared to bee venom (IC₅₀ for melittin is 41.04 μg/ml). It can therefore be assumed that the inhibition of CYP1A2 by bee venom is caused by its other components. The results obtained highlight the problem of potential interactions between bee venom and therapy.

Wydawca

-

Rocznik

Tom

70

Numer

12

Opis fizyczny

s.781-785,rys.,tab.,bibliogr.

Twórcy

autor
  • Katedra i Zakład Chemii Nieorganicznej i Analitycznej, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, ul.Grunwaldzka 6, 60-780 Poznań
  • Katedra i Zakład Chemii Nieorganicznej i Analitycznej, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, ul.Grunwaldzka 6, 60-780 Poznań
  • Katedra i Zakład Chemii Nieorganicznej i Analitycznej, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, ul.Grunwaldzka 6, 60-780 Poznań
autor
  • Zakład Biochemii, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, ul.Święcickiego 4, 60-781 Poznań
autor
  • Katedra i Zakład Chemii Nieorganicznej i Analitycznej, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, ul.Grunwaldzka 6, 60-780 Poznań

Bibliografia

  • 1. Aniya Y., Terukina R., Minamitake Y., Shiohira S.: Effect of the spine venom from the crown-of-thorns starfish, Acanthaster planci, on drug-metabolizing enzyme in rat liver. J. Tox. Sci. 1998, 23(5), 419-423.
  • 2. Barnes P. J.: Theophylline. Am. J. Resp. Crit. Care. 2013, 188(8), 901-906.
  • 3. Bonifazi F., Jutel M., Bilo B. M., Birnbaum J., Muller U.: Prevention and treatment of hymenoptera venom allergy: guidelines for clinical practice. Allergy 2005, 60(12), 1459-1470.
  • 4. Boyle R. J., Elremeli M., Hockenhull J., Cherry M. G., Bulsara M. K., Daniels M., et al.: Venom immunotherapy for preventing allergic reactions to insect stings. Cochrane Db. Syst. Rev. 2012, (10).
  • 5. Callaghan J. T., Bergstrom R. F., Ptak L. R., Beasley C. M.: Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin. Pharmacokinet. 1999, 37(3), 177-193.
  • 6. Cichocka-Jarosz E., Breborowicz A.: Uczulenie na jad pszczoły. Ped. Dypl. 2007, 11(2), 116-132.
  • 7. Danielson P. B.: The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 2002, 3(6), 561-597.
  • 8. Faber M. S., Jetter A., Fuhr U.: Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin. Pharmacol. Toxicol. 2005, 97(3), 125-134.
  • 9. Fitzgerald K. T., Flood A. A.: Hymenoptera stings. Clin. Tech. Small Anim. Pract. 2006, 21(4), 194-204.
  • 10. Gorska L., Chelminska M., Kuziemski K., Skrzypski M., Niedoszytko M., Damps-Konstanska I., et al.: Analysis of safety, risk factors and pretreatment methods during rush hymenoptera venom immunotherapy. Int. Arch. Allergy Immunol. 2008, 147(3), 241-245.
  • 11. Guengerich F. P.: Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21(1), 70-83.
  • 12. Guo L. Q., Yamazoe Y.: Inhibition of cytochrome P450 by furanocoumarins in grapefruit juice and herbal medicines. Acta Pharmacol. Sin. 2004, 25(2), 129-136.
  • 13. Huang S. M., Temple R., Throckmorton D. C., Lesko L. J.: Drug interaction studies: Study design, data analysis, and implications for dosing and labeling. Clin. Pharmacol. Ther. 2007, 81(2), 298-304.
  • 14. Ingelman-Sundberg M., Sim S. C., Gomez A., Rodriguez-Antona C.: Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Therapeut. 2007, 116(3), 496-526.
  • 15. Kettner A., Hughes G. J., Frutiger S., Astori M., Roggero M., Spertini F., et al.: Api m 6: A new bee venom allergen. J. Allergy Clin. Immun. 2001, 107(5), 914-920.
  • 16. Kokot Z. J., Matysiak J.: Inductively coupled plasma mass spectrometry determination of metals in honeybee venom. J. Pharm. Biomed. Anal. 2008, 48(3), 955-959.
  • 17. Kokot Z. J., Matysiak J., Urbaniak B., Derezinski P.: New CZE-DAD method for honeybee venom analysis and standardization of the product. Anal. Bioanal. Chem. 2011, 399(7), 2487-2494.
  • 18. Kwon Y. B., Ham T. W., Kim H. W., Roh D. H., Yoon S. Y., Han H. J., et al.: Water soluble fraction (< 10 kDa) from bee venom reduces visceral pain behavior through spinal alpha(2)-adrenergic activity in mice. Pharmacol. Biochem. Be. 2005, 80(1), 181-187.
  • 19. Lehmann D. E.: Enzymatic shunting: resolving the acetaminophen-warfarin controversy. Pharmacotherapy. 2000, 20(12), 1464-1468.
  • 20. Lynch T., Price A.: The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician. 2007, 76(3), 391-396.
  • 21. Ma X., Idle J. R., Krausz K. W., Gonzalez F. J.: Metabolism of melatonin by human cytochromes p450. Drug Metab. Dispos. 2005, 33(4), 489-494.
  • 22. Matysiak J., Schmelzer C. E. H., Neubert R. H. H., Kokot Z. J.: Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. J. Pharmaceut. Biomed. 2011, 54(2), 273-278.
  • 23. Muller U., Helbling A., Berchtold E.: Immunotherapy with Honeybee Venom and Yellow Jacket Venom Is Different Regarding Efficacy and Safety. J. Allergy. Clin. Immun. 1992, 89(2), 529-535.
  • 24. Muller U. R., Haeberli G.: Use of beta-blockers during immunotherapy for Hymenoptera venom allergy. J. Allergy Clin. Immun. 2005, 115(3), 606-610.
  • 25. Park H. J., Lee S. H., Son D. J., Oh K. W., Kim K. H., Song H. S., et al.: Antiarthritic effect of bee venom – Inhibition of inflammation mediator generation by suppression of NF-kappa B through interaction with the p50 subunit. Arthritis Rheum. 2004, 50(11), 3504-3515.
  • 26. Peiren N., de Graaf D. C., Brunain M., Bridts C. H., Ebo D. G., Stevens W. J., et al.: Molecular cloning and expression of icarapin, a novel IgE-binding bee venom protein. Febs. Lett. 2006, 580(20), 4895-4899.
  • 27. Peiren N., Vanrobaeys F., de Graaf D. C., Devreese B., Van Beeumen J., Jacobs F. J.: The protein composition of honeybee venom reconsidered by a proteomic approach. Bba-Proteins. Proteom. 2005, 1752(1), 1-5.
  • 28. Pelkonen O., Maenpaa J., Taavitsainen P., Rautio A., Raunio H.: Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 1998, 28(12), 1203-1253.
  • 29. Pelkonen O., Turpeinen M., Hakkola J., Honkakoski P., Hukkanen J., Raunio H.: Inhibition and induction of human cytochrome P450 enzymes: current status. Arch. Toxicol. 2008, 82(10), 667-715.
  • 30. Putz T., Ramoner R., Gander H., Rahm A., Bartsch G., Thurnher M.: Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate. Cancer Immunol. Immun. 2006, 55(11), 1374-1383.
  • 31. Roll A., Hofbauer G., Ballmer-Weber B. K., Schmid-Grendelmeier P.: Safety of specific immunotherapy using a four-hour ultra-rush induction scheme in bee and wasp allergy. Drug Metab. Dispos. 2006, 16(2), 79-85.
  • 32. Rueff F., Przybilla B., Bilo M. B., Muller U., Scheipl F., Aberer W., et al.: Predictors of side effects during the buildup phase of venom immunotherapy for Hymenoptera venom allergy: The importance of baseline serum tryptase. J. Allergy Clin. Immun. 2010, 126(1), 105-111.
  • 33. Rueff F., Wolf H., Schnitker J., Ring J., Przybilla B.: Specific immunotherapy in honeybee venom allergy: a comparative study using aqueous and aluminium hydroxide adsorbed preparations. Allergy 2004, 59(6), 589-595.
  • 34. Son D. J., Lee J. W., Lee Y. H., Song H. S., Lee C. K., Hong J. T.: Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Therapeut. 2007, 115(2), 246-270.
  • 35. Spaldin V., Madden S., Pool W. F., Woolf T. F., Park B. K.: The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Brit. J. Clin. Pharmaco. 1994, 38(1), 15-22.
  • 36. Stumpf J. L., Shehab N., Patel A. C.: Safety of angiotensin-converting enzyme inhibitors in patients with insect venom allergies. Ann. Pharmacother. 2006, 40(4), 699-703.
  • 37. Tanaka E.: Clinically important pharmacokinetic drug-drug interactions: role of cytochrome P450 enzymes. J. Clin. Pharm. Ther. 1998, 23(6), 403-416.
  • 38. Tjia J. F., Colbert J., Back D. J.: Theophylline metabolism in human liver microsomes: inhibition studies. J. Pharmacol. Exp. Ther. 1996, 276(3), 912-917.
  • 39. Zhou J. H., Zhao J., Zhang S. X., Shen J. Z., Qi Y. T., Xue X. F., et al.: Quantification of melittin and apamin in bee venom lyophilized powder from Apis mellifera by liquid chromatography-diode array detector-tandem mass spectrometry. Anal. Biochem. 2010, 404(2), 171-178.
  • 40. Zhou S., Gao Y., Jiang W., Huang M., Xu A., Paxton J. W.: Interactions of herbs with cytochrome P450. Drug Metab. Rev. 2003, 35(1), 35-98.
  • 41. Zhu R., Hu L., Li H., Su J., Cao Z., Zhang W.: Novel Natural Inhibitors of CYP1A2 Identified by in Silico and in Vitro Screening. Int. J. Mol. Sci. 2011, 12(5), 3250-3262.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f339043-3525-4425-a4be-414c7d5fddc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.