PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 53 | 2 |

Tytuł artykułu

Immunolocalization of alfa-expansin protein (NtEXPA5) in tobacco roots in the presence of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. and Gerd.

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The arbuscules of mycorrhizae develop within apoplastic compartments of the host plant, as they are separated from the cell protoplast by an interfacial matrix continuous with the plant cell wall. Expansins are proteins that allow cell wall loosening and extension. Using fluorescence and electron microscopy we located the NtEXPA5 epitopes recognized by polyclonal antibody anti-NtEXPA5 in mycorrhizal tobacco roots. The expansin protein was localized mainly within the interfacial matrix of intracellular hyphae, arbuscule trunk and main branches. NtEXPA5 proteins were detected neither within the interface of collapsing arbuscule branches nor in non-colonized cortex cells. In plant cell walls, expansin protein was detected only at the penetration point and in the parts of cell walls that adhered firmly to fungal hyphae growing intracellularly. For the first time, NtEXPA5 protein was localized ultrastructurally in hyphae growing intracellularly at the interface of the hypha tip and sites of bending. The novel localization of NtEXPA5 protein suggests that this protein may be involved in the process of arbuscule formation: that is, in promoting apical hyphal growth and arbuscule ramification, as well as in controlling the dynamic of arbuscule mycorrhiza development.

Wydawca

-

Rocznik

Tom

53

Numer

2

Opis fizyczny

p.113-123,fig.,ref.

Twórcy

  • Department of Botany, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland

Bibliografia

  • ALEXANDER T, MEIER R, TOTH R, and WEBER HC. 1988. Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytologist 110: 363–370.
  • ALEXANDER T, TOTH R, MEIER R, and WEBER HC. 1989. Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular- arbuscular mycorrhizae in grasses. Canadian Journal of Botany 67: 2505–2513.
  • ARMSTRONG L, and PETERSON RL. 2002. The interface between the arbuscular mycorrhizal fungus Glomus intraradices and root cells of Panax quinquefolius: a Paris-type mycorrhizal association. Mycologia 94: 587–595.
  • AUGÉ RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42.
  • BALESTRINI R, and BONFANTE P. 2005. The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosystems 139: 8–15.
  • BALESTRINI R, ROMERA C, PUIGDOMENACH P, and BONFANTE P. 1994. Location of a cell wall hydroxyproline-rich glycoprotein, cellulose and β-1,3 glucans in apical and differentiated regions of maize mycorrhizal roots. Planta 195: 201–209.
  • BALESTRINI R, COSGROVE DJ, and BONFANTE P. 2005. Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220: 889–899.
  • BONFANTE P, and PEROTTO S. 1995. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist 130: 3–21.
  • BRUNDRETT M. 2004. Diversity and classification of mycorrhizal associations. Biological Reviews 79: 473–495.
  • CHO HT, and COSGROVE DJ. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. The Plant Cell 14: 3237–3253.
  • CHOI D, CHO HT, and LEE Y. 2006. Expansins: expanding importance in plant growth and development. Physiologia Plantarum 126: 511–518.
  • COSGROVE DJ. 1999. Enzymes and other agents that enhance cell wall extensibility. Annual Review of Plant Physiology and Plant Molecular Biology 50: 391–417.
  • COSGROVE DJ. 2000. New genes and new biological roles for expansins. Current Opinion in Plant Biology 3: 73–78.
  • COX G, and TINKER PB. 1976. Translocations and transfer of nutrients in vesicular arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytologist 77: 371–378.
  • DERMATSEV V, WEINGARTEN-BAROR C, RESNICK N, GADKAR V, WININGER S, KOLOTILIN I, MAYZLISH-GATI E, ZILBERSTEIN A, KOLTAI H and KAPULNIK Y. 2010. Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Molecular Plant Pathology 11: 121–135.
  • FLEMETAKIS E, EFROSE RC, DESBROSSES G, DIMOU M, DELIS C, AIVALAKIS G, UDVARDI MK, and KATINAKIS P. 2004. Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus. Molecular Plant-Microbe Interactions 17: 1283–1293.
  • FUDALI S, JANAKOWSKI S, SOBCZAK M, GRIESSER M, GRUNDLER FMW, and GOLINOWSKI W. 2008. Two tomato α-expansins show distinct spatial and temporal expression patterns during development of nematode-induced syncytia. Physiologia Plantarum 132: 370–383.
  • GALLAUD J. 1905. Études sur les mycorrhizes endotrophes. Revue Générale de Botanique 17: 5–48, 66–83, 123–136, 223–249, 313–325, 425–433, 479–500.
  • GENRE A, ORTU G, BERTOLDO C, MARTINA E, and BONFANTE P. 2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiology 149: 1424–1434.
  • GIANINAZZI-PEARSON V, SMITH SE, GIANINAZZI S, and SMITH FA. 1991. Enzymatic studies on the metabolism of vesiculararbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytologist 117: 61–76.
  • GIORDANO W, and HIRSCH AM. 2004. The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweetclover – Sinorhizobium meliloti interaction. Molecular Plant-Microbe Interactions 17: 613–22.
  • GOLOTTE A, LEMOINE MC, and GIANINAZZI-PEARSON V. 1996. Morphofunctional integration and cellular compatibility between endomycorrhizal symbionts. In: Mukerji KG [ed.], Concepts in Mycorrhizal Research, 91–111.
  • Kluwer, Dordrecht. GOLLOTTE A, CORDIER C, LEMOINE MC, and GIANINAZZI-PERASON V. 1997. Role of the fungal wall components in interactions between endomycorrhizal symbionts. In: Schenk HEA, Herrmann R, Jeon KW, Muller NE and Schwemmler W [eds.], Eukaryotism and Symbiosis, Intertaxonomic Combination Versus Symbiotic Adaptation, 412–427. Springer, Berlin Heidelberg New York.
  • GOODAY GW. 1971. An autoradiographic study of hyphal growth of some fungi. Journal of General Microbiology 67: 125–133.
  • HARRISON MJ, DEWBRE GR, and LIU J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413–2429.
  • HIWASA K, ROSE JKC, NAKANO R, INABA A, and KUBO Y. 2003. Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit. Physiologia Plantarum 117: 564–572.
  • JOURNET EP, VAN TUINEN D, GOUZY J, CRESPEAU H, CARREAU V, FARMER MJ, NIEBEL A, SCHIEX T, JAILLON O, and CHATAGNIER O. 2002. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Research 30: 5579–5592.
  • KARNOVSKY MJ. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology 27, 137A
  • KENDE H, BRADFORD K, BRUMMELL D, CHO HT, COSGROVE DJ, FLEMING A, GEHRING C, LEE Y, MCQUEEN-MASON SM, ROSE J, and VOESENEK LA. 2004. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Molecular Biology 55: 311–314.
  • KERFF F, AMOROSO A, HERMAN R, SAUVAGE E, PETRELLA S, FILÉE P, CHARLIER P, JORIS B, TABUCHI A, NIKOLAIDIS N, and COSGROVE DJ. 2008. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proceedings of the National Academy of Sciences USA 105: 16876–16881.
  • KIM ES, LEE HJ, BANG W-G, CHOI I-G, and KIM KH. 2009. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering 102: 1342–1353.
  • KITAGAWA M, ITO H, SHIINA N, NAKAMURA N, INAKUMA T, KASUMI T, ISHIGURO Y, YABE K, and ITO Y. 2005. Characterization of tomato fruit ripening and analysis of gene expression in F1 hybrids of the ripening inhibitor (rin) mutant. Physiologia Plantarum 123: 331–338.
  • KUDLA U, QIN L, MILAC A, KIELAK A, MAISSEN C, OVERMARS H, POPEIJUS H, ROZE E, PETRESCU A, SMANT G, BAKKER J, and HELDER J. 2005. Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis. FEBS Letters 579: 2451–2457.
  • LEE Y, and KENDE H. 2001. Expression of β-expansins is correlated with internodal elongation in deepwater rice. Plant Physiology 127: 645–54.
  • LEE Y, and KENDE H. 2002. Expression of alpha-expansin and expansin-like genes in deepwater rice. Plant Physiology 130: 1396–1405.
  • LEE DK, AHN JH, SONG SK, CHOI YD, and LEE JS. 2003. Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiology 131: 985–997.
  • LI Y, DARLEY CP, ONGARO V, FLEMING A, SCHIPPER O, BALDAUF SL, and MCQUEEN-MASON S. 2002. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiology 128: 854–864.
  • LIU JY, BLAYLOCK LA, ENDRE G, CHO J, TOWN CD, VANDENBOSCH KA, and HARRISON MJ. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. The Plant Cell 15: 2106–2123.
  • MALDONADO-MENDOZA IE, and HARRISON MJ. 1998. A xyloglucan endo-transglycosylate (XET) gene from Medicago truncatula induced in arbuscular mycorrhizae. 2nd International Conference on Mycorrhiza, July 5–10, Uppsala, Sweden.
  • MCQUEEN-MASON S, and COSGROVE DJ. 1994. Disruption of hydrogen bonding between wall polymers by proteins that induce plant wall extension. Proceedings of the National Academy of Sciences USA 91: 6574–6578.
  • MCQUEEN-MASON S, and COSGROVE DJ. 1995. Expansins mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiology 107: 87–100.
  • PETERSON RL, MASSICOTTE HB, and MELVILLE LH. 2004. Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ottawa.
  • QIN L, KUDLA U, ROZE EH, GOVERSE A, POPEIJUS H, NIEUWLAND J, OVERMARS H, JONES JT, SCHOTS A, SMANT G, BAKKER J, and HELDER J. 2004. A nematode expansin acting on plant. Nature 427: 30.
  • RAUSCH C, DARAM P, BRUNNER S, JANSA J, LALOI M, LEGGEWIE G, AMRHEIN N, and BUCHER M. 2001. A Phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462–466.
  • REINHARDT D. 2007. Programming good relations – development of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 10: 98–105.
  • ROSE JKC, LEE HH, and BENNETT AB. 1997. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proceedings of the National Academy of Sciences USA 94: 5955–5960.
  • SALOHEIMO A, HENRISSAT B, HOFFREN AM, TELEMAN O, and PENTTILA M. 1994. A novel small endoglucanase gene, EGL5, from Trichoderma reesei isolated by expression in yeast. Molecular Microbiology 13: 219–228.
  • SAMBROOK J, FRITSCH EF, and MANIATIS T. 1989. Molecular Cloning: A laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York.
  • SAMPEDRO J, and COSGROVE DJ. 2005. The expansin superfamily. Genome Biology 6: 242.
  • SICILIANO V, GENRE A, BALESTRINI R, CAPPELLAZZO G, DEWIT PJGM, and BONFANTE P. 2007. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiology 144: 1455–1466.
  • SMITH SE, and READ DJ. 2008. Mycorrhizal Symbiosis. Third Edition. Academic Press, London.
  • SUJKOWSKA M, BORUCKI W, and GOLINOWSKI W. 2007. Localization of expansin-like protein in apoplast of pea (Pisum sativum L.) root nodules during interaction with Rhizobium leguminosarum bv. viciae 248. Acta Societatis Botanicorum Poloniae 76: 17–26.
  • TRIVEDI PK, and NATH P. 2004. MaExp1, an ethylene-induced expansin from ripening banana fruit. Plant Science 167: 1351–1358.
  • VENABLE JH, and COGGESHALL R. 1965. Simplified lead citrate stain for use in electron microscopy. Journal of Cell Biology 25: 407.
  • WEI W, CHUN Y, JUN L, CHANGMEI L, YAJUN W, and SHENG Y. 2010. Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase. Journal of Plant Physiology 167: 1204–1210.
  • WEIDMANN S, SANCHEZ L, DESCOMBIN J, CHATAGNIER O, GIANINAZZI S, and GIANINAZZI-PEARSON V. 2004. Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Molecular Plant-Microbe Interactions 17: 1385–1393.
  • WHITNEY SEC, GIDLEY MJ, and MCQUEEN-MASON SJ. 2000. Probing expansin action using cellulose/hemicellulose composites. The Plant Journal 22: 327–334.
  • XU B, JANSON JC, and SELLOS D. 2001. Cloning and sequencing of a molluscan endo-b-1, 4-glucanase gene from the blue mussel, Mytilus edulis. European Journal of Biochemistry 268: 3718–3727.
  • YENNAWAR NH, LI LC, DUDSINSKI DM, TABUCHI A, and COSGROVE DJ. 2006. Crystal structure and activities of EXPB1 (Zea m 1), a α-expansin and group-1 pollen allergen from maize. Proceedings of the National Academy of Sciences 103: 14664–14671.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f2132d7-e693-4fed-af00-c394a4b81355
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.