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S u m m a r y. For the detection of outliers (observations 
which are seemingly different from the others) the method of 
testing hypotheses is most often used. This approach, however, 
depends on the level of signifi cance adopted by the investigator. 
Moreover, it can lead to an undesirable effect of “masking” the 
outliers. This paper presents an alternative method of outlier 
detection based on the Akaike information criterion. Statistical 
calculations and comparative analysis for the proposed method 
were conducted with commonly used statistical tests on the 
basis of the classical Grubbs experiment and the research into 
the combustion of biomass with plant composition. The ad-
vantages of the method and rationale for the selection of the 
appropriate statistical model were formulated in the form of 
conclusions.

K e y  w o r d s : outliers, data entropy, Akaike information 
criterion, Dixon test, Grubbs test.

1. INTRODUCTION

In the experiments carried out in the fi eld of technical 
sciences, natural sciences and humanities we are often 
dealing with a sample, where the numerical values   of 
some observations differ signifi cantly from the others. 
The presence of such an observation in a sample (i.e. 
an outlier) may be due to various types of measurement 
errors, equipment failures, etc. In other words these ob-
servations should be regarded as undesirable, derived 
from a different population and ultimately excluded from 
statistical analysis.

However, outliers with apparently large or small val-
ues   can be accepted by the probability distribution of the 
characteristic, which would mean that in the considered 
experiment we have a feature of less common value. So, 
it should be saved for further statistical analysis, thus 
increasing its effi ciency.

For the detection and fi nal evaluation (inclusion or 
exclusion from further analysis) of an outlying single 
observation the appropriate statistical test can be used, 

described by [24]. The problem with rejecting one outly-
ing observation for the sample taken from a population 
with normal distribution was investigated by numerous 
researchers e.g. [8,9,10,12,16,18,25]. In a multivariate 
normal model rejecting outliers was considered e.g. by 
[8,13,17,20,21,23,24].

It should be noted that the detection of outliers with 
a test makes the statistical inference dependent on the 
level of test signifi cance, which in practice may mean 
obtaining different conclusions for different levels of 
the test. Also, statistical conclusions drawn from the 
performed test often depend on the number of obser-
vations considered as outliers (masking outliers). This 
means that the same “suspicious” observations in one 
subset of measurements may be recognized as outliers, 
and in another may not.

The purpose of this paper is to present an alternative 
method for detecting outliers based on the general crite-
rion of Akaike. This criterion, derived from information 
theory, was applied to select the best statistical model that 
describes (in terms of maximum entropy) real experiment 
data. The following discussion is based on the results of 
[1,2,21] allowing for the choice from the models describ-
ing real data of such a model that maximizes entropy by 
using the function:

2ln( ) 2AIC W K= − + , (1)

where:
W - likelihood calculated for the parameter estimates, 

obtained by the method of maximum likelihood, K -
number of parameters.

As suggested by Sakamoto, it would be best to choose 
the model for which AIC value is the lowest.
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2. THE MODEL OF OUTLIERS

Let us consider observation test n which, when rear-
ranged according to increasing values,   creates the set:

(1) (2) ( )nx x x≤ ≤ ≤⋯ .

So x
(k)

 is the value of the k-th positional statistics X
k,n

.
In the rest of the paper we use the following notation: 

(x; , 2) is the density of a normal distribution with 
mean  and variance 2, (x; , 2) is the distribution 
function of this distribution, and f

r
(x; , 2) is the density 

of r-th positional statistics from the normal population, i.e.:
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denotes the function Beta [David 1979]. It is known 
that:
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for natural p and q.

The model describing data with possible outliers 
after taking into account (2) - (6) can be represented by 
the density function:
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The model described by (7) means that n
1
 of initial 

observations: 
1(1) ( ), , nx x… , n-n

1
-n

2
 of the middle obser-

vations: 
1 2( 1) ( ), ,n n nx x+ −… and n

2
of the fi nal observations: 

2( 1) ( ), ,n n nx x− + …  are realizations of normal variables with 
the same variance 2, and the means, respectively, 

1
, ,

2
.

In this model, we consider the results 
1(1) ( ), , nx x… and 

2( 1) ( ), ,n n nx x− + … as „candidates” for outlying observations.
Likelihood function of the model (7) can be written 

as follows:
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From logarithms of functions (7) we get the rela-
tionship:
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By (8) - (11) the modifi ed Akaike criterion (the mini-
mum value (1)) takes the form:

2

1

2

1 1

2

1 2

2

1 1 2

ˆ ˆ2 ( ; , , , ) 2 2 ( 0)

ˆ ˆ ˆ2 ( ; , , , , ) 2 3 ( 0, 0)
( , )

ˆ ˆ ˆ2 ( ; , , , , ) 2 3 ( 0, 0)

ˆ ˆ ˆ ˆ2 ( ; , , , , , ) 2 4 ( 0, 0)

l x i j i j

l x i j i j
AIC i j

l x i j i j

l x i j i j

µ σ

µ µ σ

µ µ σ

µ µ µ σ

− + × = =


− + × ≠ =
= 

− + × = ≠
− + × ≠ ≠

, (12)

where: 2

1 2
ˆ ˆ ˆ ˆ, , ,µ µ µ σ  denote parameter estimates ob-

tained by the method of maximum likelihood.

3. STATISTICAL CALCULATIONS 
FOR CLASSICAL TESTS AND 
INFORMATION CRITERION

Below is a description of the most popular classical 
tests for detecting one or two outliers.

a) Tests for a single outlying observation 

(i)
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where: s is the sample standard deviation.

b) Dixon tests
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where:
1, 0 7i j for n= = ≤ ,

1 8,9,10i j for n= = = , (15)
2, 1 11,12,13i j for n= = = ,

2 14i j for n= = ≥ .
c) Grubbs tests:
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where:
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d) Tests for multiple outliers (single-sided case):
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e) Tests for multiple outliers (double-sided case):

(v) 
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where: z
i
 is the value x

i
 of the i-th smallest distance 

from the mean x  and 
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Critical values   for these statistics for certain signifi -
cance levels are given in [10,11].

Grubbs [1969] cites the following data on the percent-
age elongation at break of selected synthetic materials 
(after ordering):

2,02;2,22;3,04;3,23;3,59;3,73;3,94;4,05;4,11;4,13

In this case, you can only initially get interested in 
outlying observations to the left of the mean, because 
the very high readings indicate a remarkable plasticity 
of the material, which is a desired feature. Questionable 
results here are the two lowest values: 2.02, 2.22. We 
calculate the values of tests:

Below is the statistical calculation based on the fi g-
ures from the experience performed by G. Maj in 2011. 
The experiment tested, among others, [May 2011] the 
percentage of ash in pellets made from 11 different plant 
materials, depending on the combustion temperature and 
moisture levels. Combustion of the tested biomass in 
the form of test pellets was performed using the muffl e 
furnace Nabertherm L3/B180. 1-2 g test sample of solid 
fuel was placed in the oven and heated to the temperature 
of 6000C or 8150C. The ash content in the test sample of 
solid fuel was calculated using the following formula:
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where:
Aa- ash content of the test sample [%],
m

1
- ignited cell mass [g],

m
2
- cell mass with the weighed solid fuel [g],

m
3
- cell mass with ash [g].

One series of measurements in the context of our 
discussion seems to be particularly interesting. The giant
Miscanthus combusted at 8150C rendered the following 
results:

3,4;3,42;3,45;3,67;3,71;25,93.

The theory presented in Part 2 allows calculation of 
the Akaike information criterion for various confi gura-
tions of outliers. The results of calculations are presented 
in Table 4.1, while the values of classical tests after the 
calculations are as follows:

6
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10

25,93 7,625
2,2358,

8,3481

25,93 3,71
0,9867,

25,93 3,41

0,0849
0,002.
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T
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Ta b l e  4 . 1 .  Values   of Akaike information criterion for the 
ash content in giant Miscanthus

High outliers

L
ow

 o
ut

li
er

s

None 25,39
25,39
4,25

None 32,6507 32,0385 * 43,4342

3,41 38,4383 37,8094 44,4609

3,41
3,42

41,1633 40,9162 46,7224

4. SUMMARY AND CONCLUSIONS

The presented modifi ed Akaike information criterion 
allows for the choice of the correct statistical model in 
the set of models describing a particular experiment and 
takes into account the maximum value of entropy. At the 
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same time it is independent from the selected different 
levels of signifi cance of statistical tests used to verify the 
hypotheses formulated within the study. Simultaneously, 
it is an analytical indication concerning the exclusion 
of the optimal number of outliers in the sample, while 
maintaining a hypothetical probability distribution of 
the tested characteristic. Unambiguous indication by 
the criterion of the outliers which need to be removed 
naturally eliminates the potential for masking effect of 
outliers in the sample.

Conclusion 1. The classic experiment of Grubbs dis-
cussed by many authors is a typical example of the ambi-
guity of statistical inference based on the classical tests. 
None of these tests recognizes the outlying of the lowest 
value (the lowest single observation) in the sample. The 
resulting test values   do not exceed the predicted critical 
thresholds because 1

1 11 12,18; 0,477; 0,418T r L< < ≥ ,
while the calculated value 2 0,224 0,2305L = < at the 
signifi cance level  = 0,05 detects the outlying of the 
two lowest observations, while for higher values  still 
does not detect outlying.

The above-mentioned problems are not noticed in 
the case of the modifi ed Akaike criterion, since the low-
est value of the function (1.1) at 16.041 obtained for the 
two low outliers clearly suggests the rejection of the two 
lowest observations.

Conclusion 2. The calculated values   of the criterion 
presented in Table 4.1 clearly indicate the correct model 
confi gurations (single outlier value to the right of the 
mean), because the maximum observation value 25.39 
(shown in Table 4.1) corresponds to the minimum value 
of the function (1.1). This conclusion, in this case, is 
consistent with the conclusions of the classical tests, since 
at the level of signifi cance  = 0,05 we obtain:

6

6 10 12,2358 1,996; 0,9867 0,56; 0,002 0,2032T r L= > = > = <

which means that the values   of all the classical tests 
are in the critical area.

REFERENCES

1. Akaike H., 1973: Information theory and an extension 
of the maximum likelihood principle. 2nd International 
Symposium on Information Theory, eds B.N. Petrv and 
F. Csaki, 267-281. Budapest; Akademiai Kiado.

2. Akaike H., 1977: On entropy maximization principle. 
Proc Symposium on Applications of Statistics, ed. P.R. 
Krishnaiah, 27-47, Amsterdam: North Holland.

3. David H.A., 1956a: On the application of an elementary 
theorem in probability. Biometrika 43 85-91.

4. David H.A., 1956b: Revised upper percentage points of 
the extreme deviate from the sample mean. Biometrika
43 449-451.

5. David 1979. Pariadkowyje statistiki.Mockba Nauka
6. Ellenberg, J.H., 1973: The joint distribution of the 

standardized least squares residuals from a general linear 
regression.J.Amer.Statist.Assoc. 68 941-943.

7. Ellenberg J.H., 1976: Testing for a single outlier from 
a general linear regression. Biometrics 32 637-645.

8. Ferguson T.S., 1961: On the rejection of outliers. In 
Proc.Fourth Berkeley Symposium Math.Statist.Prob.1,
253-287.

9. Galpin J.S., and Hawkins D.M. 1981: Rejection of 
a single outlier in two or three-way layouts. Techno-
metrics 23 65-70.

10. Grubbs F.E., 1950: Sample criteria for testing outlying 
observations. Ann.Math.Statist. 21 27-58.

11. Grubbs F.E., 1969: Procedures for detecting outlying 
observations in samples. Technometrics.11 1-21.

12. Joshi P.C., 1972: Some slippage tests of mean for a sin-
gle outlier in linear regression. Biometrika 59 109-120.

13. Karlin S., and Traux D., 1960: Slippage problems. 
Ann.Math.Statist 31 296-324.

14. Kudô A., 1956: On the testing of outlying observations. 
Sankhya 17 67-76.

15. Nair K.R., 1948: The distribution of the extreme deviate 
of the sample mean and its studentized form. Biometrika
35 118-134.

16. Niedzió ka I., Szymanek M., 2010: An estimation of 
phisycal properties briquettes produced from plant bio-
mass. TEKA commission of motorization and energetics 
in agriculture Vol. 10, No. 2, 301-307.

17. Pan J.X., and Fang K.T., 1995: Multiple outlier detec-
tion in growth curve model with unstructured covariance 
matrix.Ann.Inst.Statist.Math.47. 137-153.

18. Queensberry C.P., and David H.A., 1961: Some tests 
of outliers Biometrika 48 370-390.

19. Schwager S.J and Margolin B.H., 1982: Detection of 
multivariate normal outliers. Ann.Statist. 10. 943-954.

20. Siotani M., 1959: The extreme value of generalized 
distances of the individual points in the multivariate 
normal sample. Ann.Inst.Statist.Math 10 183-208 

21. Srikantan K.S., 1961: Testing for the single outlier in 
regression model. Sankhya A 23 251-260.

22. Srivastava M.S., 1997: Slippage tests of mean for a sin-
gle outlier in multivariate normal data Amer.J.Manage.
Sci.

23. Srivastava M.S., and Von Rosen D., 1998: Outliers 
in Multivariate Regression Models.J.Mult.Anal. 65. 
195-208.

24. Stefansky W., 1972: Rejecting outliers in factorial de-
signs. Technometrics. 14 469-479.

25. Thompson W.R., 1935: On a criterion for the rejection 
of observations and the distribution of the ratio of the 
deviation of the sample standard deviation. Ann.Math.
Statist. 6 214-219.

26. Wilks S.S., 1963: Multivariate statistical outliers.
Sankhya A. 25 406-427.

ZASTOSOWANIE KRYTERIUM INFORMACYJNEGO AKAIKE 

DO WYKRYWANIA OBSERWACJI ODSTAJ CYCH

S t r e s z c z e n i e . Do wykrywania obserwacji odstaj cych
(pozornie odbiegaj cych od pozosta ych) najcz ciej stosuje si
metody testowania hipotez. Podej cie takie zale y jednak od 
przyj tego przez badacza poziomu istotno ci. Ponadto mo e
ono prowadzi  do niepo danego efektu „maskowania” osta-
j cych obserwacji. W niniejszej pracy przedstawiono alterna-
tywn  metod  wykrywania odstaj cych obserwacji bazuj c
na kryterium informacyjnym Akaike. Kalkulacje statystyczne 
oraz analiz  porównawcz , proponowanej metody z powszech-
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nie stosowanymi testami statystycznymi, przeprowadzono na 
podstawie klasycznego eksperymentu Grubbsa oraz bada
dotycz cych spalania biomasy o sk adzie ro linnym. Zalety 
metody oraz uzasadnienie wyboru odpowiedniego modelu sta-
tystycznego sformu owano w postaci wniosków ko cowych.

S o w a  k l u c z o w e : obserwacje odstaj ce, entropia da-
nych, kryterium informacyjne Akaike, test Dixona, test Grub-
bsa.


