PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 2 |

Tytuł artykułu

Bacterial diversity and abundance in shell biofilms from the freshwater snail Pleurocera canaliculatum (cerithioidea: Pleuroceridae)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mollusk shells provide a hard substrate for aquatic biofilm colonization. While most work has focused on bivalve shells and grazing, little work has focused on gastropod shells and the microbes growing on them. We sampled biofilms from 14 Pleuroceracanaliculatum and analyzed them using a metagenomic approach. Microbial diversity varied between individuals, and rarefaction suggested that 63 snails would need to be sampled to capture all of the estimated genus-level diversity. Cyanobacteria and species of Novosphingobium and Methylosoma were the most abundant taxa across all shells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

2

Opis fizyczny

p.181-184,fig.,ref.

Twórcy

autor
  • School of Science and Computer Engineering, University of Houston Clear Lake, Houston, Texas, USA
autor
  • School of Science, University of Louisiana at Monroe, Monroe, Louisiana, USA
autor
  • School of Health Sciences, Natural Science, and Math, Louisiana Delta Community College, Monroe, Louisiana, USA

Bibliografia

  • Abbott L.L. and E.A. Bergey. 2007. Why are there few algae on snail shells? The effects of grazing, nutrients and shell chemistry on the algae on shells of Helisoma trivolvis. Freshw. Biol. 52: 2112–2120.
  • Besemer K., H. Peter, J.B. Logue, S. Langenheder, E.S. Lindstrom, L.J. Travnik and T.J. Battin. 2012. Unraveling assembly of stream biofilm communities. ISME J. 6: 1459–1468.
  • Bischoff P.J. and S. Wetmore. 2009. Seasonal abundances of naked amoebae in biofilms on shells of zebra mussels (Dreissena polymorpha) with comparative data from rock scrapings. J. Eukaryot. Microbiol. 56: 397–399.
  • Caporaso J.G., C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, N. Fierer and R. Knight. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108: 4516–4522.
  • Chao A., R.L. Chazdon, R.K. Colwell and T.J. Shen. 2005. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol. Let. 8: 148–159.
  • Colwell R.K. 2013. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. http://purl.oclc.org/estimates, 2014.12.01.
  • DeSantis T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069–5072.
  • Dillon R.T. Jr. 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge.
  • Gan H.M., A.O. Hudson, A.Y.A. Rahman, K.G. Chan and M.A. Savka. 2013. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 114: 1–14.
  • Gillan D.C. and C. De Ridder. 1997. Morphology of a ferric iron-encrusted biofilm forming on the shell of a burrowing bivalve (Mollusca). Aquat. Microb. Ecol. 12: 1–10.
  • Gillan D.C., A.G.C.L. Speksnijder, G. Zwart and C. De Ridder. 2008. Genetic diversity of the biofilm covering Montacutaferruginosa (Mollusca: Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 64: 3464–3472.
  • Gough H.L. and D.A. Stahl. 2011. Profiles of microbial community structures in anoxic freshwater lake sediments along a metal contamination gradient. ISME J. 5: 543–558.
  • Gutiérrez J.L., C.G. Jones, D.L. Strayer and O.O. Iribarne. 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.
  • Hladyz S., R.A. Cook, R. Petrie and D.L. Nielsen. 2011. Influence of substratum on the variability of benthic biofilm stable isotope signatures: implications for energy flow to a primary consumer. Hydrobiologia 664: 135–146.
  • Ivanov V., O. Stabnikova, P. Sihanonth and P. Menasveta. 2006. Aggregation of ammonia-oxidizing bacteria in microbial biofilms on oyster shell surface. World J. Microbiol. Biotechnol. 22: 807–812.
  • Johnson P.J. 2009. Sustaining America’s biodiversity. Freshwater snail biodiversity and conservation. Virginia Polytechnic and Institute and State University, Blacksburg, VA.
  • Komarek J. and T. Hauer. 2013. Online database of cyanobacterial genera. http://www.cyanodb.cz, 2014.12.01.
  • Kresse T.M. and J.A. Fazio. 2002. Pesticides, water quality and geochemical evolution of ground water in the alluvial aquifer, Bayou Bartholomew watershed, Arkansas. Arkansas Department of Environmental Quality, Little Rock, AR.
  • Layher W.G. 2005. Bayou Bartholomew watershed nine element plan. LayherBioLogics RTEC Inc., Pine Bluff, AR. Lopez D., H. Vlamakis and R. Kolter. 2010. Biofilms. Cold Spring Harb. Perspect. Biol. 2: 1–11.
  • Lopez-Doval J.C., M. Ricart, H. Guasch, A.M. Romani, S. Sabater and I. Munoz. 2010. Does grazing pressure modify diuron toxicity in a biofilm community? Arch. Environ. Contam. Toxicol. 58: 955–962.
  • Lundqvist A., S. Bertilsson and W. Goedkoop. 2012. Interactions with DOM and biofilms affect the fate and bioavailability of insecticides to invertebrate grazers. Ecotoxicology 21: 2398–2408.
  • McClean R. 1983. Gastropod shells: a dynamic resource that helps shape benthic community structure. J. Exp. Mar. Biol. Ecol. 69: 151–154.
  • Minton R.L., J.D. White, D.M. Hayes, M.S. Chenoweth and A.M. Hill. 2008. Diversity and distribution of freshwater gastropods in the Bayou Bartholomew drainage, Arkansas, USA. Am. Malacol. Bull. 26: 171–177.
  • Olapade O.A. and L.G. Leff. 2005. Seasonal response of stream biofilm communities to dissolved organic matter and nutrient enrichments. Appl. Environ. Microbiol. 71: 2278–2287.
  • Parks D.H., G.W. Tyson, P. Hugenholtz and R.G. Beiko. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30: 3123–3124.
  • Rahalkar M., I. Bussmann and B. Schink. 2007. Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment from Lake Constance. Int. J. Syst. Evol. Microbiol. 57: 1073–1080.
  • Sheldon F. and K.F. Walker. 1997. Changes in biofilms induced by flow regulation could explain extinctions of aquatic snails in the lower River Murray, Australia. Hydrobiologia 347: 97–108.
  • Tien C.-J. and C.S. Chen. 2013. Patterns of metal accumulation by natural river biofilms during their growth and succession. Arch. Environ. Con. Tox. 64: 605–616.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2887e73f-1a01-437a-ae2d-b028b2f43a5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.