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Summary 

A new class of split-plot × split-block (SPSB) designs for at least three factor experiments is 
introduced in the paper. The SPSB designs are the most widely used in agriculture research, espe-
cially for field trials. Basic farming practices, e.g. crop cultivars, herbicide applications, fertiliza-
tion methods or tillage type are compared using demonstration strips on a farm field. In the paper 
we consider a situation when the mentioned above SPSB designs are augmented by a new group 
of A treatments (control treatments) that are to be replicated less than the test A treatments. The 
problem of the arrangement of such treatments in the experiment often appears. It is connected 
with the structure of experimental units and/or with a limited experimental material of some fac-
tor. A numerical example is presented to illustrate the method of the constructing the design and 
its analysis under mixed linear model. 

Key words and phrases: augmented block design, control treatments, efficiency balance, split-
plot × split-block design, test treatments 

Classification AMS 1993: 62K10, 62K15 

1. Introduction 

Many split-plot × split-block (SPSB) experiments used in agriculture, bio-
chemistry or plant protection are designed to study new crop plant cultivars or 
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chemical agents etc. (e.g. LeClerg et al., 1962; Mucha, 1975; Wadas et al., 
2004, 2005). A problem of comparison of the new treatments with those earlier 
described is usually very important in these experiments. Frequently limited 
amount of the experimental material does not allow to use a complete design. 
Such experiments may then be laid down in an incomplete (non-orthogonal) 
design. Preferably, its efficiency with respect to the interesting treatment com-
parisons (contrasts) is full. One of strategies for such situations is planning 
SPSB experiment designs augmented to accommodate a set of new treatments 
of one factor that are to be replicated less than others. 

Augmented SPSB designs can be generated by designs from a class of 
augmented block designs known from the literature also as supplemented or 
more generally reinforced block designs, introduced for one-factor experiments 
(cf. Pearce, 1960; Federer, 1961; Corsten, 1962; Caliński, 1971; Caliński and 
Ceranka, 1974; Singh and Dey, 1979; Puri et al., 1977; Ceranka and Krzysz-
kowska, 1994). Generally, two sets of treatments exist in all the above designs. 
Usually one set is referred to us the set of test (basic) treatments and the other - 
the set of control (supplementary) treatments. The major aim of such experi-
ments is the comparison of both the sets of treatments and treatment compari-
sons within sets. The augmented designs were used in split-block and split-plot 
arrangements (c.f. Mejza I., 1998; Kachlicka and Mejza, 1998, 2002a, 2002b, 
2003; Federer, 2005; Federer and Arguillas, 2006; Federer and King, 2007). 
They were introduced also in generating incomplete SPSB designs by AmbroŜy 
et al., (2004). 

The ideas in the mentioned papers were used to construct a class of aug-
mented split-plot × split-block experiment designs. It should be noticed that the 
resulting designs belong to a class of incomplete SPSB designs with orthogonal 
block structure (OBS). They are also generally balanced (cf. Houtman and 
Speed, 1983; Mejza S., 1992). A modelling and analysis of data obtained from 
such experiments were presented by AmbroŜy and Mejza (2003, 2004b, 2006). 
There are given, among other things, general statistical properties with refer-
ence to an estimation of the orthogonal contrasts among main effects of the 
factors and interaction contrasts.  

2. Assumptions and notations 

Consider an (s × t × w) - experiment in which the first factor, say A, has s 
levels A1, A2, …, As, the second factor, say B, has t levels B1, B2, …, Bt and the 
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third factor, say C, has w levels C1, C2, …, Cw. Let v (= stw) be the number of 
all treatment combinations.  

We assume that a desirable three factor experimental design structure con-
sists of b blocks which can be grouped in R superblocks where each superblock 
contains b/R blocks. It should be underlined that number of superblocks and the 
number of blocks inside each superblock is strictly connected with an applied 
here constructing method of that design (see paragraph 3). The blocks then 
should have a row–column structure (perpendicular strips) with k1 (≤ s) rows 
and t columns of the first order, shortly, columns I. So there are k1t (≤ st) inter-
section plots of the first order within each block, below called whole plots. 
Then each column I has to be split into w columns of the second order, shortly, 
columns II. So there are k1tw (≤ stw) intersection plots of the second order 
within each block, below called small plots. Here the rows correspond to the 
levels of the factor A, termed also as row treatments or A treatments, the co-
lumns I correspond to the levels of the factor B, called also column I treatments 
or B treatments, and the columns II are to accommodate the levels of the factor 
C termed as column II treatments or C treatments. 

Since the units have to be randomized before they enter the experiment, a 
randomization model with six main strata is here suitable. In the experiment we 
perform the four-step randomization [blocks → rows and (columns I → col-
umns II)]. It leads to a mixed linear model with fixed treatment effects and ran-
dom block, row and column effects. This model is of the form as in AmbroŜy 
and Mejza (2003, 2006) and it has the following properties: 

 E(y) = ττττ∆∆∆∆′ ,   Cov(y) = nf
f

f IξDV 2
6

1
)( σγ +∑ ′=

=
, 

where ∆∆∆∆′  is a known design matrix for v  treatment combinations, and ττττ (v×1) 

is the vector of fixed effects of treatment combinations, '
fD  are design matri-

ces for blocks (f = 1), rows within blocks (f = 2), columns I within blocks (f = 3), 
columns II within columns I (f = 4), whole plots within blocks (f = 5) and  
subplots within whole plots (f = 6), and ξ f , f = 1,…, 6, and e (n × 1) are random 
effect vectors of blocks, rows, columns I, columns II, whole plots, subplots and 
technical errors, respectively. 

 According to the orthogonal block structure (OBS) of the considered SPSB 

designs, the dispersion matrix )(γV  can be expressed by ∑
=

=
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where 0≥fγ  and the }{ fP  are a family of known pairwise orthogonal pro-

jectors adding up to the identity matrix (cf. Houtman and Speed, 1983). The 
range space }{ fPℜ of fP , f = 0,1,…, 6 is termed the f-th stratum of the model 

and the }{ fγ  are unknown stratum variances. It can be shown (AmbroŜy and 

Mejza, 2003, 2006) that in the incomplete SPSB design the fP  matrices gener-

ate six main strata: the inter-block stratum (1), the inter-row (within the block) 
stratum (2), the inter-column I (within the block) stratum (3), the inter-column 
II (within the column I) stratum (4), the inter-whole plot (within the block) stra-
tum (5) and the inter-subplot (within the whole plot) stratum (6). 

This model can be analyzed using the methods developed for multistratum 
experiments (cf. Nelder, 1965a, 1965b). Some details connected with ANOVA 
and particular analyses based on theory of orthogonal contrasts are presented in 
AmbroŜy and Mejza (2003, 2006). 

3. Construction method of the augmented SPSB designs and an example 

In this paper we consider one case of a construction of the augmented 
SPSB design using traditional method based on Kronecker product of matrices. 
The method consists in applying an augmented block design to the row treat-
ments (A treatments) taking the remaining factors as in a complete (orthogonal) 
SPSB design. We assume that the row treatments (A treatments) consist of two 
groups with 1v  test (basic) A treatments and 2v  additional (control) A treat-

ments, so 21 vvv +=∗ .  
The generating factor A is allocated in the augmented block design d* with 

the following incidence matrix (see, Kachlicka and Mejza, 2000): 
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In this case 1N~  denotes the incidence matrix of a randomized complete 

block (RCB) design. It is assumed that its b1 blocks each with 1
~
k  units can be 

grouped into R superblocks of the same size (b1/R blocks). The superblocks are 
then supplemented by q (different in each superblock) additional treatments, i.e. 
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Rqv =2 . So, the number of units inside each block in the design d* is equal to 

qkk +=∗
1

~
. Thus, the distinct eigenvalues of the matrix ∗d

C  with respect to 

δ
∗r  and their multiplicities are following: 10 =∗ε , 

RvvvqR −+=−+−+=∗
2110 )1()1(1ρ , 

∗
∗ =

k

k1
1

~
ε , 11 −=∗ Rρ , where δ

∗r  

is a diagonal matrix with diagonal elements equal to the vector of a replication 

of A treatments, i.e. ])/([
21 11 ′′′=∗

vv Rbb 11r M . It can be shown that the first 

class of efficiency equal to ∗0ε  (=1) is connected with the comparison 1) be-

tween the basic (test) group and the additional (control) group of the A treat-
ments, 2) among additional (control) A treatments inside each superblock, 3) 

the basic (test) A treatments only and the second class of efficiency equal to ∗1ε  
refers to the comparisons among the additional (control) A treatments between 
the superblocks.  

In this paper the construction of the augmented SPSB design is based on 
Kronecker product of matrices (cf. AmbroŜy et al., 2004; AmbroŜy and Mejza, 
2003, 2004a, 2006). So the incidence matrix with respect to blocks is of the 
form: 

wtd 11NN ⊗⊗= *1 . 

The described above supplementation of the design d* causes the resulting 
augmented SPSB design is always connected and it has parameters:  

twvv ∗= , 1bb = , twkk ∗= , wt 11rr ⊗⊗= ∗ , 

where v, b, k, r  denote the number treatment combinations, the number of 
blocks, the size of blocks and the vector of replication of the treatment combi-
nations, respectively. Needed in the analysis information matrices for the treat-
ment combinations (in general forms) can be find in the mentioned above pa-
pers. Using those matrices the statistical properties (general balance, stratum 
efficiencies, estimability of contrasts) can be easy checked. 
 
Example. Consider a (7 × 2 × 2) - experiment of type SPSB in which the A 
treatments are allocated on the rows (strips) according to the incidence matrix 
as follows: 
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)(N . Remaining factors, B and C are as in a 

complete (orthogonal) SPSB design. It means that not all (st = 14) treatment 
combinations of type A × B will appear on the whole plots inside each block 
what is going together with that not all treatment combinations of type A × B × C 
(stw = 28) will appear on the subplots within whole plots in the SPSB design. It 
can be noticed that one group of the A treatments (say, test A treatments) is in a 

RCB design with parameters: v1 = 3; b1 = 4; 1
~
k = 3. We assume that the blocks 

of RCB design can be grouped into R superblocks. Each superblock of the RCB 
design is augmented with q = 2 different A treatments. So, in the experiment 

42 == Rqv  control A treatments will appear. The parameters of the aug-
mented block design for the A treatments are following:  

v* = 7, b* = 4, ]2,2,2,2,4,4,4[)( =′∗r , 451k =∗ , 10 =∗ε , 50 =∗ρ , 

6,01 =∗ε , 11 =∗ρ . 

So, the parameters of the augmented SPSB design are equal to: 

 28=v , 4=b , 20=k , 22]2,2,2,2,4,4,4[ 11r ⊗⊗′= . 

The sample layout (before randomization) of the augmented SPSB 
experiment in the Example is as fallowing 

  
   Block 1                        Block 2                     Block 3                   Block 4 
 

 B1 B2   B1 B2   B1 B2   B1 B2 

 C1 C2 C1 C2   C1 C2 C1 C2   C1 C2 C1 C2   C1 C2 C1 C2 

A1      A1      A1      A1     

A2      A2      A2      A2     

A3      A3      A3      A3     
A4      A4      A6      A6     
A5      A5      A7      A7     

 
To design the experiment according to the plan given above we randomize 

from an experimental material (a field) four blocks of 20 subplots. The number 
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of the treatment combinations is equal to 28 therefore it exceeds the size of the 
blocks. The A treatments, B treatments and C treatments are randomly allocated 
to adequate perpendicular strips (rows, columns I, columns II) inside each block 
(see paragraph 2). The control treatments A4 – A7 well treatment combinations 
with them are replicated twice in the experiment. Statistical properties neces-
sary in ANOVA of the augmented SPSB design from the example under mixed 
linear model are given in the table 1. They follow from algebraic properties of 
the stratum information matrices for the treatment combinations (cf. AmbroŜy 
and Mejza, 2003, 2004b, 2006). Eigenvalues of those matrices calculated with 

respect to the matrix δr  are interpreted as stratum efficiency factors and they 
are given in the table 1. It can be shown that the efficiency factors correspond to 
the following orthogonal contrasts c′ττττ among effects:  
– of the A treatments (A), including: 

� of the test A treatments (AT), (e.g. c′ = θ [1, -1, 0, 0, 0, 0, 0]⊗ 21′  ⊗ 21′ ), 
� of the control A treatments within superblocks (AC)1,  

        (e.g. c′ = θ [0, 0, 0, 1, -1, 0, 0]⊗ 21′  ⊗ 21′ ), 
� of the control A treatments between superblocks (AC)2,  
     (c′ = θ [0, 0, 0, 1, 1, -1, -1]⊗ 21′  ⊗ 21′ ), 
� of both groups of the test and control A treatments (AT vs. AC ), 
     (c′ = θ [4, 4, 4, -3, -3, -3, -3]⊗ 21′  ⊗ 21′ ), 

– of the B treatments (B), (c′ = θ 71′ ⊗ [1, -1] ⊗ 21′ ), 

– of the C treatments (C), (c′ = θ 71′  ⊗ 21′ ⊗ [1, -1]), 

– interaction of types: AT × B, (AC )1 × B, (AC )2 × B, (AT vs. AC) × B,  
– interaction of types: AT × C, (AC )1 × C, (AC )2 × C, (AT vs. AC) × C, 
– interaction of type: B × C,  
– interaction of types: AT × B × C, (AC )1 × B × C, (AC )2 × B × C, (AT vs. AC) × B × C. 

All contrasts are normalized with respect to r −δ, so in each case crc δθ −′= /1 , 
where r −δ is a diagonal matrix with diagonal elements equal to reciprocals of 
numbers of replications of treatment combinations. Estimability of the contrasts 
in the strata was checked (see e.g. AmbroŜy and Mejza, 2006). All calculations 
were done by Excel and GenStat. In table 1 we present results, namely stratum 
efficiency factors of the design with respect to the contrasts. We can use them 
to calculate stratum sums of squares (SS) for “treatments” in ANOVA and in 
particular analyses (see e.g. AmbroŜy and Mejza, 2006). 

It can be noticed that using the augmented SPSB experiment design from 
the Example all contrasts among A treatments are estimated in the stratum (2). 
So, the general hypothesis connected with the factor A can be tested in this 
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stratum. We only loss information about the contrasts among the control A 
treatments (AC)2 and interaction contrasts connected with them. Those contrasts 
are estimated in two strata, (1) and (2). The contrasts among effects of the test 
A treatments, the control A treatments within superblocks and between the test 
and control A treatments likewise other contrasts connected with main effects 
of the factors B, C, B × C interaction contrasts are estimated with full efficiency 
(=1) as in a complete SPSB design. 

 

Table 1. Stratum efficiency factors corresponding to estimable orthogonal contrasts  
for the Example  

 

Sources of variation Degrees of freedom 
Efficiency 

factors 
 the inter-block stratum (1)  

 control A treatments (AC)2 
∗
1ρ  =1 1- ∗

1ε = 0.4 

 Error (1) r(P1) - 1= 2  
 the inter-row (within the block) stratum (2)  
 A s – 1 = 6  

 test A treatments (AT) ∗
0ρ  - 3 = 2 1 

 control A treatments (AC)1 
∗
0ρ - 3 = 2 1 

 control A treatments (AC)2 
∗
1ρ  =1 ∗

1ε  = 0.6 

AT vs. AC 1 1 
 Error (2) r(P 2) - 6 = 10  
 the inter-column I (within the block) stratum (3)  
 B t - 1= 1 1 

 (AC )2 × B  ∗
1ρ  ( t - 1) = 1 1- ∗

1ε = 0.4 

 Error (3) r(P 3) - 2 = 2  
 the inter-column II (within the column I) stratum (4)  
 C w - 1= 1 1 
 B × C (t - 1)(w - 1) = 1 1 

(AC )2 × C 
∗
1ρ  (w - 1) = 1 1 - ∗

1ε = 0.4 

 (AC )2 × B × C ∗
1ρ (t - 1)(w - 1) = 1 1 - ∗

1ε  = 0.4 

 Error (4) r(P 4) - 4 = 4  
 the inter-whole plot (within the block) stratum (5)  
 A × B (s - 1)(t - 1) = 6 1 

 AT × B  ( ∗
0ρ  - 3 ) (t - 1) = 2 1 

 (AC )1 × B  ( ∗
0ρ - 3)( t - 1) = 2 1 

 (AC )2 × B ∗
1ρ  ( t - 1) = 1 ∗

1ε  = 0.6 

 (AT vs. AC) × B  1⋅( t - 1) = 1 1 
 Error (5) r(P 5) - 6 = 10  
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 the inter-subplot (within the whole plot) stratum (6)  
A × C (s - 1)(w - 1) = 6  

 AT × C ( ∗
0ρ  - 3 ) (w - 1) = 2 1 

 (AC )1 × C ( ∗
0ρ - 3)( w - 1) = 2 1 

 (AC )2 × C ∗
1ρ  ( w - 1) = 1 ∗

1ε  = 0.6 

 (AT vs. AC) × C 1⋅ ( w - 1) = 1 1 
A × B × C (s - 1)(t - 1)(w -1) = 6  

 AT × B × C ( ∗
0ρ  - 3 ) (t - 1)(w - 1) = 2 1 

 (AC )1 × B × C ( ∗
0ρ - 3)( t - 1)( w - 1) = 2 1 

 (AC )2 × B × C ∗
1ρ  ( t - 1)( w - 1) = 1 ∗

1ε  = 0.6 

 (AT vs. AC) × B × C 1⋅ ( t - 1)( w - 1) = 1 1 
 Error (6) r(P 6) - 12 = 20  

References 

AmbroŜy K., Kachlicka D., Mejza I. (2004). Rozszerzone układy blokowe w konstrukcji układów 
mieszanych dla doświadczeń trójczynnikowych. Colloquium Biometryczne 34, 15−26 (in 
Polish). 

AmbroŜy K., Mejza I. (2003). Some split-plot × split-block designs. Colloquium Biometryczne 33, 
83−96. 

AmbroŜy K., Mejza I. (2004a). Incomplete split-plot × split-block designs based on Kronecker 
type products. Colloquium Biometryczne 34, 27−38. 

AmbroŜy K., Mejza I. (2004b). Split-plot × split-block type three factors designs. Proc. of the 
19th International Workshop on Statistical Modelling, Florence, 291─295. 

AmbroŜy K., Mejza I. (2006). Doświadczenia trójczynnikowe z krzyŜową i zagnieŜdŜoną strukturą 
poziomów czynników. Wyd. Polskie Towarzystwo Biometryczne and PRODRUK, Poznań 
(in Polish). 

Caliński T. (1971). On some desirable patterns in block designs. Biometrics 27, 275-292.  

Caliński T., Ceranka B. (1974). Supplemented block designs. Biom. J., 16, 299-305.  

Ceranka B., Krzyszkowska J. (1994). Reinforced block designs with two groups of treatments. 
Biometrical Letters, 31(1), 17-25. 

Corsten L.C.A. (1962). Balanced block designs with two different numbers of replicates. Biomet-
rics, 18, 499-519. 

Federer W.T (1961). Augmented designs with one way elimination of heterogeneity. Biometrics, 
17, 447-473. 

Federer W.T. (2005). Augmented Split Block Experiment Design. Agronomy Journal, 97, 578-
586. 



KATARZYNA AMBRO śY, DANUTA KACHLICKA, IWONA MEJZA 182 

Federer W. T., Arguillas F. O. (2006). Augmented Split-plot Experiment Design. Journal of Crop 
Improvement. 15 (1), 81-96. 

Federer W. T., King F. (2007). Variations on Split Plot and Split Block Experiment Designs. 
Wiley. 

Houtman A.M., Speed T.P. (1983). Balance in designed experiments with orthogonal block struc-
ture. Ann. Statist. 11, 1069-1085. 

Kachlicka D., Mejza I. (1998). Supplemented block designs with split units. Colloquium Biome-
tryczne 28, 77-90. 

Kachlicka D., Mejza I. (2000). Właściwości statystyczne pewnych rozszerzonych zrównowa-
Ŝonych układów blokowych. Rocz. AR. Pozn. Rolnictwo 59, 61-72. 

Kachlicka D., Mejza I. (2002a). Split-block designs with one factor in certain supplemented block 
designs. Colloquium Biometryczne 32, 39-50. 

Kachlicka D., Mejza I. (2002b). Modelling and analysis of a resolvable split-plot design with 
supplemented whole plots. FOLIA Facultatis Scientarium Naturalium Universitatis Ma-
sarykianae, 83-90. 

Kachlicka D., Mejza I. (2003). Two types of control treatments in incomplete split-block designs. 
Colloquium Biometryczne 33, 67−82. 

LeClerg E.L., Leonard W.H., Clark A.G. (1962). Field plot technique. Burgess, Minneapolis.  

Mejza I. (1998): Characterisation of certain split-block designs with a control. Biom. J. 40, 627-
639. 

Mejza S. (1992). On some aspects of general balance in designed experiments. Statistica 52, 263-
278. 

Mucha S. (1975). Reakcja odmian pszenicy jarej i ozimej na Antywylegacz. Wiadomości Od-
mianoznawcze, Rok II, Zeszyt 2/3, COBORU, Słupia Wielka. 

Nelder, J. A. (1965a). The analysis of randomized experiments with orthogonal block structure. 1. 
Block structure and the null analysis of variance. Proc. of the Royal Soc. of Lond. Ser. A, 
283, 147-162. 

Nelder, J. A. (1965b). The analysis of randomized experiments with orthogonal block structure. 2. 
Treatment structure and general analysis of variance. Proc. of the Royal Soc. of Lond. Ser. 
A, 283, 163-178. 

Pearce S.C. (1960). Supplemented balance. Biometrika, 47, 263-271. 

Puri P.D., Nigam A.K., Narain P. (1977). Supplemented block designs. Sankhya 39, B, 189-195. 

Singh M., Dey A. (1979). On analysis of some augmented block designs. Biom. J. 21, 87-92. 

Wadas W., Jabłońska-Ceglarek R., Kosterna E. (2004). The effect of the cultivation method and 
nitrogen fertilization on the size and structure of the field of immature potato tubers. Elec-
tronic Journal of Polish Agricultural Universities. Horticulture, 7 (1), art-07.html. 

Wadas W., Jabłońska-Ceglarek R., Kosterna E. (2005). The nitrates content in early potato tubers 
depending on growing conditions. Electronic Journal of Polish Agricultural Universities. 
Horticulture, 8 (1), art-26.html. 



SPLIT-PLOT × SPLIT-BLOCK ANALYSIS WITH CONTROL A TREATMENTS 183 

ANALIZA TYPU SPLIT-PLOT ×××× SPLIT-BLOCK  
Z OBIEKTAMI KONTROLNYMI W OBRĘBIE CZYNNIKA A 

Streszczenie 

W pracy została przedstawiona nowa klasa układów split-plot × split-block (SPSB) dla do-
świadczeń z co najmniej trzema czynnikami. Układy SPSB są szeroko stosowane w badaniach 
rolniczych, szczególnie w polowych doświadczeniach. Podstawowe procedury związane z uprawą 
roli, takie jak plonowanie odmian, stosowanie herbicydów, metody nawoŜenia lub sposoby upra-
wy są porównywane właśnie stosując róŜnego rodzaju pasy na polu doświadczalnym. W pracy 
rozwaŜamy taką sytuację, w której wspomniane wyŜej układy SPSB zostają rozszerzone o nową 
grupę obiektów (kontrolnych) w obrębie czynnika A replikowanych mniejszą liczbę razy niŜ 
obiekty testowe tego czynnika. Pojawia się często problem rozmieszczenia takich obiektów w 
doświadczeniu. Związany jest on z dostępną strukturą jednostek doświadczalnych oraz (lub) z 
ograniczeniem materiału doświadczalnego jakiegoś czynnika. W pracy przedstawiono przykład 
numeryczny, który ilustruje prezentowaną metodę konstrukcji układu i określa sposób analizy 
danych przy modelu liniowym mieszanym. 

Słowa kluczowe: rozszerzony układ blokowy, obiekty kontrolne, zrównowaŜenie pod względem 
efektywności, układ split-plot × split-block, obiekty testowe 
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