PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 63 | 3 |

Tytuł artykułu

Role of monophenols in the recovery process of wild-type yeast cells subjected to severe environmental stress

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Phenolic compounds are important plant metabolites associated with the plant’s defence reactions in conditions of biotic and abiotic stress. Heterotrophic organisms are not capable of synthesizing phenolic compounds, but absorb them with foods of plant origin. Many of them exhibit antioxidant activity in chemical and biological assays. This study examined whether these compounds are able to protect cells of a heterotrophic organism from the effects of severe environmental stress. A wild-type strain of Saccharomyces cerevisiae yeast was used in the experiments. Yeast cells that were pre-incubated in conditions of severe thermal, osmotic or oxidative stress and then plated on a medium enriched with benzoic acid and its derivatives had a similar survival rate to the cells growing on a medium with no supplements, while in the presence of cinnamic acid derivatives and coumarin a reduction was observed in their survival. In the presence of the synthetic monophenol BHT, two different reactions were noted – a decrease in survival after 10 min of severe heat shock, and similar survival to that of the cells growing on the non-supplemented medium after 5 min of heat shock and the other types of stress. The results obtained suggest that monophenols used after severe environmental stress are not capable of eliminating the detrimental effects of these factors.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

3

Opis fizyczny

p.187-191,ref.

Twórcy

autor
  • Chair of Biochemistry and Environmental Chemistry, Faculty of Agricultural Sciences in Zamość, University of Life Sciences in Lublin, Szczebrzeska 102, 22-400 Zamość, Poland

Bibliografia

  • 1. Bilinski T., Lukaszkiewicz J., Sledziewski A., Demonstration of anaerobic catalase synthesis in the cz1 mutant of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 1978, 83, 1225–1233.
  • 2. Dixon R.A., Paiva N.L., Stress-induced phenylopropanoid metabolism. Plant Cell., 1995, 7, 1085–1097.
  • 3. Endo A., Nakamura T., Ando A., Tokuyasu K., Shima J., Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels, 2008, 1, 3, DOI: 10.1186/1754–6834–1-3.
  • 4. Eubanks V.L., Beuchat L.R., Increased sensitivity of heat-stressed Saccharomyces cerevisiae cells to food-grade antioxidants. Appl. Environ. Microbiol., 1982, 44, 604–610.
  • 5. Glazebrook J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol., 2005, 43, 205–227.
  • 6. Kim J.H., Campbell B.C., Mahoney N., Chan K.L., May G.S., Targeting antioxidative signal transduction and stress response system: control of pathogenic Aspergillus with phenolics that inhibit mitochondrial function. J. Appl. Microbiol., 2006, 101, 181–189.
  • 7. Klinke H.B., Olsson L., Thomsen A.B., Ahring B.K., Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng., 2003, 81, 738–747.
  • 8. Kozioł S., Zagulski M., Bilinski T., Bartosz G., Antioxidants protect the yeast Saccharomyces cerevisiae against hypertonic stress. Free Radic. Res., 2005, 39, 365–371.
  • 9. Krzepilko A., Swiecilo A., Do antioxidants counteract the toxic effects of pyrethroids on Saccharomyces cerevisiae yeast? Ecol. Chem. Eng. A., 2009, 16, 1171–1178.
  • 10. Krzepilko A., Swiecilo A., Wawryn J., Zadrag R., Kozioł S., Bartosz G., Bilinski T., Ascorbate restores lifespan of superoxidedismutase deficient yeast. Free Radic. Res., 2004, 38, 1019–1024.
  • 11. Kwolek-Mirek M., Bednarska S., Bartosz G., Bilinski T., Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae. Cell Biol. Toxicol., 20098, 25, 363–378.
  • 12. Millard P.J., Roth B.L., Thi H.P., Yue S.T., Haugland R.P., Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol., 1997, 63, 2897–2905.
  • 13. Passone M.A., Resnik S.L., Etcheverry M.G., In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B accumulation by peanut Aspergillus section Flavi. J. Appl. Microbiol., 2005, 99, 682–691.
  • 14. Soares D.G., Andreazza A.C., Salvador M., Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. J. Agric. Food Chem., 2003, 51, 1077–1080.
  • 15. Swiecilo A., Gardiasz Z., Response of the Saccharomyces cerevisiae yeast cells to sodium nitrate (III) and (V). Pol. J. Env. Stud., 2007, 16 (3A), 263–268.
  • 16. Wu M.J., O’Dohert P.J., Fernandez H.R., Lyons V., Rogers P.J., Daves I.W., Higgins V.J., An antioxidant screening assay based on oxidant –induced growth arrest in Saccharomyces cerevisie. FEMS Yeast Res., 2011, 11, 379–387.
  • 17. Yeh C.T., Yen G.C., Effects of phenolic acids on human phenolsulfotransferases in relation to their antioxidant activity. J. Agric. Food Chem., 2003, 51, 1474–1479.
  • 18. Zyracka E., Zadrag R., Kozioł S., Krzepilko A., Bartosz G., Bilinski T., Ascorbate abolishes auxotrophy caused by the lack of superoxide dismutase in Saccharomyces cerevisiae yeast can be a biosensor for antioxidants. J. Biotechnol., 2005, 115, 271–278.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-25fe2f2e-1b01-410c-9593-ba2e07f91983
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.