PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 | 1 |

Tytuł artykułu

Environmental factors affecting the differential use of foraging habitat by three sympatric species of Pipistrellus

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We identified several ecological parameters that may promote the foraging habitat differentiation by sympatric bat species. The exploitation of discrete habitats was shown to facilitate the coexistence of morphologically similar species. Bats represent a model species group, where many morphologically similar species exploit similar resources, e.g. insects as prey organisms. We studied three closely related species of bats in a Central European region of sympatric occurrence — the common pipistrelle (Pipistrellus pipistrellus), Nathusius’ pipistrelle (P. nathusii), and the soprano pipistrelle (P. pygmaeus). We employed point locality data and niche-based species distribution modelling (maximum entropy modelling, ‘MaxEnt’) to model the habitat use by these species. A restricted distribution of P. pygmaeus and P. nathusii compared to P. pipistrellus was observed that may indicate a stronger habitat specialization of these two species compared to P. pipistrellus. Land cover, as well as several climatic variables influenced the habitat use of all three species (e.g., the precipitation in spring, and the temperature minimum in late summer). Despite an overlap in foraging habitat parameters, differences among species concerning their preferred habitat were noted. Responses to isothermality, mean diurnal range of temperature, temperature seasonality, and land cover differed among species. The data identify microclimatic factors, besides vegetation and other land cover types, as important effectors for habitat partitioning in these three Pipistrellus species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.57-67,ref.

Twórcy

autor
  • University of Kaiserslautern, Faculty of Biology, Department of Ecology, Erwin-Schroedinger-Strasse13/14, 67663 Kaiserslautern, Germany
autor
  • University of Kaiserslautern, Faculty of Biology, Department of Ecology, Erwin-Schroedinger-Strasse13/14, 67663 Kaiserslautern, Germany

Bibliografia

  • 1. D. D. Ackerly , D. W. Schwilk , and C. O. Webb . 2006. Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology, 87: 50–61. Google Scholar
  • 2. L. F. Aguirre , A. Herrel , R. Van Damme , and E. Matthysen . 2002. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceedings of the Royal Society of London, 269B: 1271–1278. Google Scholar
  • 3. H. D. J. N. Aldridge , and I. L. Rautenbach . 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
  • 4. H. Arita 1997. Species composition and morphological structure of the bat fauna of Yucatan, Mexico. Journal of Animal Ecology, 66: 83–97. Google Scholar
  • 5. R. Arlettaz 1999. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology, 68: 460–471. Google Scholar
  • 6. R. Arlettaz , G. Jones , and P. A. Racey . 2001. Effect of acoustic clutter on prey detection by bats. Nature, 414: 742–745. Google Scholar
  • 7. M. Barataud 1996. Ballades dans l'inaudible — identification acoustique des chauves-souris de France. Éditions Sittelle, Mens. Google Scholar
  • 8. K. E. Barlow , and G. Jones . 1997. Functions of pipistrelle social calls: field data and a playback experiment. Animal Behaviour, 53: 991–999. Google Scholar
  • 9. K. E. Barlow , G. Jones , and E. M. Barratt . 1997. Can skull morphology be used to predict ecological relationships between bat species? A test using two cryptic species of pipistrelle. Proceedings of the Royal Society of London, 264B: 1695–1700. Google Scholar
  • 10. T. Bartoniĉka , and Z. Řehák . 2004. Flight activity and habitat use of Pipistrellus pygmaeus in a floodplain forest. Mammalia, 68: 365–375. Google Scholar
  • 11. T. Bartoniĉka , Z. Řehák , and M. Andreas . 2008. Diet composition and foraging activity of Pipistrellus pygmaeus in a floodplain forest. Biologia (Bratislava), 63: 266–272. Google Scholar
  • 12. U. Bastolla , M. Lässig , S. C. Manrubia , and A. Valleriani . 2005. Biodiversity in model ecosystems, I: coexistence conditions for competing species. Journal of Theoretical Biology, 235: 521–30. Google Scholar
  • 13. L. J. Beaumont , L. Hughes , and M. Poulsen . 2005. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling, 186: 250–269. Google Scholar
  • 14. A. Bracco , A. Provenzale , and I. Scheuring . 2000. Mesoscale vortices and the paradox of the plankton. Proceedings of the Royal Society of London, 267B: 1795–1800. Google Scholar
  • 15. H. G. Broders , C. S. Findlay , and L. Zheng . 2004. Effects of clutter on echolocation call structure of Myotis septentrionalis and M. lucifugus. Journal of Mammalogy, 85: 273–281. Google Scholar
  • 16. T. Budenz , S. Heib , and J. Kusch . 2009. Functions of bat social calls: the influence of local abundance, interspecific interactions and season on the production of pipistrelle (Pipistrellus pipistrellus) type D social calls. Acta Chiropterologica, 11: 173–182. Google Scholar
  • 17. J. M. Chase , P. A. Abrams , J. P. Grover , S. Diehl , P. Chesson , R. D. Holt , S. A. Richards , R. M. Nisbet , and T. J. Case . 2002. The interaction between predation and competition: a review and synthesis. Ecology Letters, 5: 302–315. Google Scholar
  • 18. P. Chesson 2000. Mechanisms of maintenance of species diversity. Annual Review in Ecology and Systematics, 31: 343–366. Google Scholar
  • 19. M. Ciechanowski , T. Zaja , A. Bilas , and R. Dunajski . 2009. Nathusius’ pipistrelles Pipistrellus nathusii (Chiroptera) reveal different temporal activity patterns in wooded and open riparian sites. Mammalia, 73: 105–109. Google Scholar
  • 20. J. H. Connell 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35: 131–138. Google Scholar
  • 21. L Davidson-Watts , S. Walls , and G. Jones . 2006. Differential habitat selection by Pipistrellus pipistrellus and P. pygmaeus identifies distinct conservation needs. Biological Conservation, 133: 118–127. Google Scholar
  • 22. J. Elith , C. H. Graham , R. P. Anderson , M. Dudik , S. Ferrier , A. Guisan , R. J. Humans , F. Huettmann , J. R. Leathwick , A. Lehmann , et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129–151. Google Scholar
  • 23. C. Flaquer , X. Puig-Montserrat , U. Goiti , F. Vidal , A. Curcó , and D. Russo . 2009. Habitat selection in Nathusius’ pipistrelle (Pipistrellus nathusii): the importance of wetlands. Acta Chiropterologica, 11: 149–155. Google Scholar
  • 24. M. Genoud , and P. Christe . 2011. Thermal energetics and torpor in the common pipistrelle bat, Pipistrellus pipistrellus (Vespertilionidae: Mammalia). Comparative Biochemistry and Physiology, 160A: 252–259. Google Scholar
  • 25. M. Luoto Heikkinen R. K. , M. B. Araújo , R. Virkkala , W. Thuiller , and M. T. Sykes . 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30: 751–777. Google Scholar
  • 26. R. M. Herd , and M. B. Fenton . 1983. An electrophoretic, morphological, and ecological investigation of a putative hybrid zone between Myotis lucifugus and Myotis yumanensis (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 61: 2029–2050. Google Scholar
  • 27. P. A. Hernandez , C. H. Graham , L. L. Master , and D. L. Albert . 2006. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography, 29: 773–785. Google Scholar
  • 28. J. Huisman , and F. J. Weissing . 1999. Biodiversity of plankton by species oscillations and chaos. Nature, 402: 407–410. Google Scholar
  • 29. G. E. Hutchinson 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist, 93: 145–159. Google Scholar
  • 30. G. E. Hutchinson 1961. The paradox of the plankton. American Naturalist, 95: 137–145. Google Scholar
  • 31. D. S. Jacobs , and R. M. R. Barclay . 2009. Niche differentiation in two sympatric sibling bat species, Scotophilus dinganii and Scotophilus mhlanganii. Journal of Mammalogy, 90: 879–887. Google Scholar
  • 32. T. G. Kingston , A. Jones , T. H. Zubaid , and T. H. Kunz . 2000. Resource partitioning in rhinolophoid bats revisited. Oecologia, 241: 332–342. Google Scholar
  • 33. J. M. Kneitel , and J. M. Chase . 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters, 7: 69–80. Google Scholar
  • 34. J. Kusch , and F. Schotte . 2007. Effects of fine-scale foraging habitat selection on bat community structure and diversity in a temperate low mountain range forest. Folia Zoologica, 56: 263–276. Google Scholar
  • 35. J. Kusch , C. Weber , S. Idelberger , and T. Koob . 2004. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zoologica, 53: 113–128. Google Scholar
  • 36. M. A. Leibold 1995. The niche concept revisited: mechanistic models and community context. Ecology, 76: 1371–82. Google Scholar
  • 37. M. A. Leibold , and M. A. McPeek . 2006. Coexistance of the niche and neutral perspectives in community ecology. Ecology, 87: 1399–1410. Google Scholar
  • 38. A. Y. Liu , E. F. Schisterman , and C. Q. Wu . 2005. Nonparametric estimation and hypothesis testing on the partial area under receiver operating characteristic curves. Communication in Statistics — Theory and Methods, 34: 2077–2088. Google Scholar
  • 39. M. Lundy , I. Montgomery , and J. Russ . 2010. Climate change-linked range expansion of Nathusius’ pipistrelle bat, Pipistrellus nathusii (Keyserling & Blasius, 1839). Journal of Biogeography, 37: 2232–2242. Google Scholar
  • 40. F. Mayer , and O. Von Helversen . 2001. Sympatric distribution of two cryptic bat species across Europe. Biological Journal of the Linnaean Society, 74: 365–374. Google Scholar
  • 41. T. C. Michaelsen , K. H. Jensen , and G. Högstedt . 2011. Topography is a limiting distributional factor in the soprano pipistrelle at its latitudinal extreme. Mammalian Biology, 76: 295–301. Google Scholar
  • 42. B. Nicholls , and P. A. Racey . 2006a. Contrasting home-range size and spatial partitioning in pipistrelle bats. Behavioral Ecology and Sociobiology, 61: 131–142. Google Scholar
  • 43. B. Nicholls , and P. A. Racey . 2006b. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography, 29: 697–708. Google Scholar
  • 44. M. K. Obrist , R. Boesch , and P. F. Flückiger . 2004. Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia, 68: 307–322. Google Scholar
  • 45. K. J. Park , J. D. Altringham , and G. Jones . 1996B. Assortative roosting in the two phonic types of Pipistrellus pipistrellus during the mating season. Proceedings of the Royal Society of London, 263: 1495–1499. Google Scholar
  • 46. R. G. Pearson , C. J. Raxworthy , M. Nakamura , and A. T. Peterson . 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34: 102–117. Google Scholar
  • 47. G. Pfalzer , and J. Kusch . 2003. Structure and variability of bat social calls: implications for specificity and individual recognition. Journal of Zoology (London), 261: 21–33. Google Scholar
  • 48. S. J. Phillips , and M. Dudlík . 2008. Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31: 161–175. Google Scholar
  • 49. S. J. Phillips , R. P. Anderson , and R. E. Schapire . 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231–259. Google Scholar
  • 50. H. Rebelo , and G. Jones . 2010. Ground validation of presenceonly modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology, 47: 410–420. Google Scholar
  • 51. H. Rebelo , P. Tarroso , and G. Jones . 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16: 561–576. Google Scholar
  • 52. M. L. Rosenzweig 1987. Habitat selection as a source of biological diversity. Evolutionary Ecology, 1: 315–330. Google Scholar
  • 53. J. M. Russ , and W. I. Montgomery . 2002. Habitat associations of bats in Northern Ireland: implications for conservation. Biological Conservation, 108: 49–58. Google Scholar
  • 54. D. Russo , and G. Jones . 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London), 258: 91–103. Google Scholar
  • 55. T. Sattler , F. Bontadina , A. H. Hirzel , and R. Arlettaz . 2007. Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology, 44: 1188–1199. Google Scholar
  • 56. M. Saunders , and R. M. R. Barclay . 1992. Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar species. Ecology, 73: 1335–1345. Google Scholar
  • 57. H.-U. Schnitzler , C. F. Moss , and A. Denzinger . 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386–394. Google Scholar
  • 58. T. W. Schoener 1974. Resource partitioning in ecological communities. Science, 185: 27–39. Google Scholar
  • 59. B. M. Siemers , and H.-U. Schnitzler . 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429: 657–661. Google Scholar
  • 60. B. M. Siemers , and S. M. Swift . 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology, 59: 373–380. Google Scholar
  • 61. A. Sztencel-JabłOnka , and W. Bogdanowicz . 2012. Population genetics study of common (Pipistrellus pipistrellus) and soprano (Pipistrellus pygmaeus) pipistrelle bats from central Europe suggests interspecific hybridization. Canadian Journal of Zoology, 90: 1251–1260. Google Scholar
  • 62. N. Vaughan , G. Jones , and S. Harris . 1997. Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method. Journal of Applied Ecology, 34: 716–730. Google Scholar
  • 63. A. L. Walsh , and S. Harris . 1996. Foraging habitat preferences of Vespertilionid bats in Britain. Journal of Applied Ecology, 33: 508–518. Google Scholar
  • 64. M. S. Wisz , R. J. Humans , J. Li , A. T. Peterson , C. H. Graham , A. Guisan , and Nceas Predicting Species Distributions Working Group . 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763–773. Google Scholar

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2009c2f3-e324-4650-847f-2c32a234deab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.