PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 3 |

Tytuł artykułu

Effect of silicon on chilling-induced changes of solutes, antioxidants, and membrane stability in seashore paspalum turfgrass

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We present a detailed study to investigate if silicon supplementation enhances chilling resistance of seashore paspalum (Paspalum vaginatum Swartz) turf. An enhanced growth status suggests an improved chilling resistance by Si addition, which is coupled with the observation of more Si cells in leaf epidermal cells, as well as a lower LT₅₀ (the low temperature required to cause 50% electrolyte leakage). Chilling stress induces significant adaptive increases of free proline (P<0.01), all soluble sugar (P<0.01) and the activity of peroxidase (POD) (P<0.05), and leads to the decreases of the activities of superoxide dismutase (SOD) and catalase (CAT) (P<0.05), results in notably higher measurements of malondialdehyde (MDA) (P<0.05). Silicon addition promoted significant increase of proline and sucrose (P<0.01), while maintaining significantly higher activities of SOD, POD, CAT, and notably leveling off of MDA (P<0.05) under chilling stress. These results indicate that silicon enhances the chilling resistance of turfgrass via maintaining a stable membrane and a beneficial cell status readily coping with the chilling-induced oxidative stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

3

Opis fizyczny

p.487-494,fig.,ref.

Twórcy

autor
  • Faculty of Life Science, Foshan University, 528000 Foshan, Guangdong, People’s Republic of China
autor
  • Faculty of Life Science, Foshan University, 528000 Foshan, Guangdong, People’s Republic of China
autor
  • Faculty of Life Science, Foshan University, 528000 Foshan, Guangdong, People’s Republic of China
autor
  • Faculty of Life Science, Foshan University, 528000 Foshan, Guangdong, People’s Republic of China
autor
  • Faculty of Life Science, Foshan University, 528000 Foshan, Guangdong, People’s Republic of China

Bibliografia

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.) monitored by electrolyte leakage. Plant Prod Sci 1:96–103
  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activities: some large consequences of minor changes in conditions. Anal Biochem 161:559–566
  • Datnoff LE, Rutherford BA (2003) Accumulation of silicon by bermudagrass to enhance disease suppression of leaf spot and melting out. USGA Turfgrass Environ Res Online 2:1–6
  • Datnoff LE, Seebold KW, Correa Victoria FJ (2001) The use of silicon for integrated disease management: Reducing fungicide applications and enhancing host plant resistance. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, The Netherlands, pp 171–184
  • Dionne J, Castonguay Y, Nadeau P, Desjardins Y (2001) Amino acid and protein changes during cold acclimation of green-type annual bluegrass (Poa annua L.) ecotypes. Crop Sci 41:1862–1870
  • Dörffling K, Abromeit M, Bradersen U, Dörffling H, Melz G (1998) Involvement of abscisic acid and proline in cold acclimation of winter wheat. In: Li PH, Chen THH (eds) Plant cold hardinesss. Pergamon Press, New York, pp 283–292
  • Duncan RR (1999) Environmentally compatibility of seashore paspalum (saltwater couch) for golf courses and other recreational uses. II. Management protocols. Int Turfgrass Soc Res J 8:1230–1239
  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664
  • Eraslan F, Inal A, Pilbeam DJ, Gunes A (2008) Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activities in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul 55:207–219
  • Gao X, Zou C, Wang L, Zhang F (2004) Silicon improves water use efficiency in maize plants. J Plant Nutri 27:1457–1470
  • Guo W, Zhu YG, Liu WJ, Liang YC, Geng CN, Wang SG (2007) Is the effect of silicon on rice uptake of arsenate related to internal silicon concentrations, iron plaque and phosphate nutrition? Environ Pollut 148:251–257
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 25:189–198
  • Jing JH, Ding ZR (eds) (1981) Plant biochemistry analytical method. Science Press, Beijing, pp 197–207 (in Chinese)
  • Kaldy MS, Freyman S (1984) Free amino acids in unhardened and cold hardened winter wheat crowns. J Plant Nutr 7:1103–1111
  • Koster KL, Lynch DV (1992) Solute accumulation and compartmentation during the cold acclimation of Puma rye. Plant Physiol 98:108–113
  • Levitt J (1980) Responses of plants to environmental stresses. In: Chilling, freezing and high temperature stresses, vol 1. Academic Press, New York, p 580
  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activities and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164
  • Liang YC, Sun WC, Romheld V (2005a) Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54:678–685
  • Liang YC, Zhang WH, Chen Q, Ding RX (2005b) Environmental and experimental botany effects of silicon on H+-ATPase and H+-PPase activities, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37
  • Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428
  • Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24:445–466
  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397
  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780
  • McKown R, Kuroki G, Warren G (1996) Cold responses of Arabidopsis mutants impaired in freezing tolerance. J Exp Bot 47:1919–1925
  • Moing A, Carbonne F, Rashad MH, Gaudillère JP (1992) Carbon fluxes in mature peach leaves. Plant Physiol 100:1878–1884
  • Naidu BP, Paleg LG, Aspinall D, Jennings AC, Jones GP (1991) Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30:407–409
  • Neethirajan S, Gordon R, Wang L (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotech 27:461–467
  • O’Kane D, Gill V, Boyd P, Burdon R (1996) Chilling, oxidative stress and antioxidant enzyme response in Arabidopsis thaliana callus. Planta 198:371–377
  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440
  • Ristic Z, Ashworth EN (1993) Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 172:111–123
  • Wang SY, Galletta GJ (1998) Foliar application of potassium silicate induces metabolic changes in strawberry plants. J Plant Nutr 21:157–167
  • Wang L, Qing N, Li M, Zhang F, Zhuang J, Yang W, Li T, Wang Y (2005) Biosilicified structures for cooling plant leaves: a mechanism of highly efficient midinfrared thermal emission. Appl Phys Lett 87:194105
  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–399
  • Wei ZW, Yun DH, Wang KS (1995) Measurement of freezing LT50 by electrical conductivity methods in associated with the logistic equation in oats. Qinhai Xumu Shouyi Zhazhi 115:11–13
  • Xia HP, Ao HX, Liu SZ (2000) Reasons why turfgrass becomes yellow and wither in winter of south China and some preventive strategies-taking turf in Guangzhou as an example. Grassl China 2000(5):64–67 (in English with Chinese abstract)
  • Xin Z, Browse J (1998) Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95:7799–7804
  • Yang B, Chen X, Liu X, Guo H (2006) Observation of silicon cells on the leave surface in different varieties of rices. J Chin Electr Microsc Soc 25(2):146–150
  • Yeo AR, Flowers SA, Rao G, Welfare K (1999) Silicon reduces sodium uptake in rice (Oryza Sativa L.) in saline condition and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565
  • Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1fd5ebde-e009-442c-be41-8b1c631c6104
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.