PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 157 | 10 |

Tytuł artykułu

Kriogeniczne przechowywanie nasion

Treść / Zawartość

Warianty tytułu

EN
Cryogenic storage of seeds

Języki publikacji

PL

Abstrakty

EN
Cryopreservation is a method of storage of biological material at the temperature of liquid nitrogen (–196°C, LN). The main advantage of this method is the possibility to store viable cells for a long time. Desiccation and freezing sensitivity of seeds, their fragments or other plant organs, which are useful as genetic resources, should be investigated before cryopreservation.

Wydawca

-

Czasopismo

Rocznik

Tom

157

Numer

10

Opis fizyczny

s.723-729,tab.,bibliogr.

Twórcy

autor
  • Pracownia Biologii Nasion, Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik
autor
  • Pracownia Biologii Nasion, Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik
autor
  • Pracownia Biologii Nasion, Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik
autor
  • Pracownia Biologii Nasion, Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik

Bibliografia

  • Beardmore T., Whittler C. A. 2005. Induction of tolerance to desiccation and cryopreservation in silver maple (Acer saccharinum) embryonic axes. Tree Physiology 25 (8): 965−972.
  • Berjak P., Farrant J. M., Pammenter N. W. 1989. The basis of recalcitrant seed behavior. W: Taylors R. B. [red.]. Recent Advances in the Development and Germination of Seeds. Plenum Press, New York. 89−108.
  • Berjak P., Mycock D. J. 2004. Calcium, with magnesium, is essential for normal seedling development from partially−dehydrated recalcitrant axes: a study on Trichilia dregeana Sond. Seed Science Research 14 (2): 217−231.
  • Chmielarz P. 2009a. Cryopreservation of dormant European ash (Fraxinus excelsior) orthodox seeds. Tree Physiol. 29 (10): 1279−1285.
  • Chmielarz P. 2009b. Cryopreservation of dormant orthodox seeds of forest trees: mazzard cherry (Prunus avium L.). Annals of Forest Science 66 (4): 405.
  • Chmielarz P. 2010a. Cryopreservation of orthodox seeds of Alnus glutinosa. CryoLetters 31 (2): 139−146.
  • Chmielarz P. 2010b. Cryopreservation of conditionally dormant orthodox seeds of Betula pendula. Acta Physiologiae Plantarum 32 (3): 591−596.
  • Chmielarz P. 2010c. Cryopreservation of the non−dormant orthodox seeds of Ulmus glabra. Acta Biologica Hungarica 61 (2): 224−233.
  • Chmielarz P. 2010d. Cryopreservation of dormant orthodox seeds of European hornbeam (Carpinus betulus). Seed Science and Technology 38 (1): 146−157.
  • Chmielarz P., Grenier−de March G., de Boucaud M. T. 2005. Cryopreservation of Quercus robur L. embryogenic calli. CryoLetters 26 (6): 349−356.
  • Chmielarz P., Michalak M., Pałucka M., Wasileńczyk U. 2011. Successful cryopreservation of Quercus robur plumules. Plant Cell Reports 30 (8): 1405−1414.
  • Crane J., Miller A. L., Roekel J. W., Walters C. 2003. Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217 (5): 699−708.
  • Dussert S., Chabrillangr N., Rocquelin G., Engelmann F., Lopez M., Hamon S. 2001. Tolerance of coffee (Cofea spp.) seeds to ultra−low temperature exposure in relation to calorimetric properties of tissue water, lipid composition, and cooling procedure. Physiologia Plantarum 112 (4): 495−504.
  • Ellis R. H., Hong T. D., Roberts E. H. 1990. An Intermediate Category of Seed Storage Behaviour? I. Coffee. Journal of Experimental Botany 41 (9): 1167−1174.
  • Goveia M., Kioko J. I., Berjak P. 2004. Developmental status is a critical factor in the selection of excised recalcitrant axes as explants for cryopreservation. Seed Science Research 14 (2): 241−248.
  • Hazubska−Przybył T., Chmielarz P., Michalak M., Bojarczuk K. 2010. Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tissue and Organ Culture 102 (1): 35−44.
  • Hazubska−Przybył T., Chmielarz P., Michalak M., Dering M., Bojarczuk K. 2013. Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth−dehydration method. Plant Cell Tiss. Organ Cult. DOI: 10.1007/s11240−012−0270−2.
  • Hor Y. L., Kim Y. J., Ugap A., Chabrillange N., Sinniah U. R., Engelmann F., Dussert S., 2005. Optimal Hydration Status of Intermediate Oil Seeds: Citrus as a Case Study. Annals of Botany 95 (7): 1153−1161.
  • Kaczmarczyk A., Funnekotter B., Menon A., Phang P. Y., Al−Hanbali A., Bunn E., Mancera R. L. 2012. Current Issues in Plant Cryopreservation. W: Katkov II [red.]. Current Frontiers in Cryobiology. InTech. 417−438.
  • Kalemba E. M., Pukacka S. 2008. Changes in late embryogenesis abundant proteins and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds. Environmental and Experimental Botany 63 (1−3): 274−280.
  • Mycock D. 1999. Addition of calcium and magnesium to a glycerol and sucrose cryoprotectant solution improves the quality of plant embryo recovery from cryostorage. CryoLetters 20 (2): 77−82.
  • Nadarajan J., Staines H. J., Benson E. E., Marzalina M., Krishnapillaya B., Harding K. 2007. Optimalization of cryopeservation for Sterculia cordata zygotic embryos using vitrification techniques. Journal of Tropical Forest Science 19 (2): 79−85.
  • Ngobese N. Z., Sershen, Pammenter N. W., Berjak P. 2010. Cryopreservation of the embryonic axes of Phoenix reclinata, a representative of the intermediate seed category. Seed Science and Technology 38 (3): 704−716.
  • Pritchard H. W. 2007. Cryopreservation of desiccation−tolerant seeds. W: Day J. G., Stacey G. N. [red.]. Cryopreservation and freeze−drying protocols. Humana Press Inc, Totowa, New Jersey. 185−202.
  • Pukacka S., Ratajczak E. 2006. Antioxidative response of ascorbate−glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J. Plant Physiol. 163 (12): 1259−1266.
  • Pukacka S., Ratajczak E. 2007. Ascorbate and glutathione metabolism during development and desiccation of orthodox and recalcitrant seeds of the genus Acer. Funct. Plant Biol. 34 (7): 601−613.
  • Pukacka S., Ratajczak E., Kalemba E. M. 2009. Non−reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. J. Plant Physiol. 166 (13): 1381−1390.
  • Reed B. M., Paynter C. L., DeNoma J., Chang Y. 1998. Techniques for medium− and long−term storage of pear (Pyrus sp.) genetic resources. IPGRI Plant Genetic Resources Newsletter 15: 1−5.
  • Roberts E. H., 1973. Predicting the storage life of seeds. Seed Science and Technology. 499−514.
  • Stanwood P. C. 1985. Cryopreservation of seed germplasm for genetic conservation. W: Kartha K. K. [red.]. Cryopreservation of Plant Cells and Organs. CRC Press Inc. 200−225.
  • Stushnoff C., Juntilla O. 1978. Resistance to low temperature injury in hydrated lettuce seed by supercooling. W: Li P. H., Sakai A. [red.]. Plant cold hardiness and freezing stress: mechanisms and crop implications. Academic Press, NY. 241−247.
  • Walters C. 2004. Temperature dependency of molecular mobility in preserved seeds. Biophysical Journal 86 (2): 1253−1258.
  • Walters C., Farrant J. M., Pammenter N. W., Berjak P. 2002. Desiccation Stress and Damage. W: Black M., Pritchard H. W. [red.]. Desiccation and Plan Survival. CABI Publishing, Wallingford UK. 263−291.
  • Walters C., Pammenter N. W., Berjak P., Crane J. 2001. Desiccation damage, accelerated aging and respirations in desiccation tolerant and sensitive tissues. Seed Science Research 11 (2): 135−148.
  • Walters C., Wesley−Smith J., Crane J., Hill L. M., Chmielarz P., Pammenter N., Berjak P. 2008. Cryopreservation of recalcitrant (i.e. Desiccation−Sensitive) Seeds. W: Reed B. M. [red.]. Plant Cryopreservation: A Practical Guide. Springer Science Business Media, LLC. 465−484.
  • Walters C., Wheeler L., Stanwood P. C. 2004. Longevity of cryogenically stored seeds. Cryobiology 48 (3): 229−244.
  • Wang B. S. P., Charest P. J., Downie B. 1993. Ex situ storage of seeds, pollen and in vitro cultures of perennial woody plant species. FAO Forestry Paper 113.
  • Wesley−Smith J., Pammenter N. W., Berjak P., Walters C. 2001. The effects of two drying rates on the desiccation tolerance of embryonic axes of recalcitrant jackfruit (Artocarpus heterophullus Lamk.) seeds. Annals of Botany 88 (4): 653−664.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1fb5aa19-ad61-4782-8406-e8a283b1da53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.