PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 1 |

Tytuł artykułu

Cranial shape and diet variation in Myotis species (Chiroptera: Vespertilionidae): testing the relationship between form and function

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The relationship between cranial morphology and diet has long been investigated in bats. Bats of the genus Myotis include insectivorous, facultatively piscivorous, and piscivorous species. We tested the hypothesis that facultatively piscivorous (five Myotis species) and piscivorous species (M. vivesi) present cranial morphological and functional changes with respect to insectivorous taxa (16 Myotis species). Cranial shapes in skull and mandible modules were described with four geometric landmark configurations in these dietary groups. Gape capacity was measured with the stretch factors for temporal and masseter muscles. Geometric configurations from two skull and two mandible shapes were analyzed to detect differences in cranial morphology in relation to diet. Differences in cranial morphology were found between piscivorous and insectivorous species involving the mandibular process where masticatory muscles are attached. Linear regression analysis of Procrustes distances and gape capacity showed that the shape of the mandibular process region was highly correlated with the stretch factor of the masseter muscle in piscivorous and facultatively piscivorous species. These results suggest differences in cranial morphology and performance among diets but the hypothesis of gradual changes in cranial shape among diets was only accepted for the mandible and not for the skull. Myotis vivesi appears to improve mechanical advantage of masticatory muscles at lower gapes, presumably allowing more efficient chewing of slippery prey.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

p.163-180,fig.,ref.

Twórcy

  • Posgrado en Ciencias Biologicas, Instituto de Biologi, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria, Distrito Federal, 04510, Mexico
autor
  • Instituto de Ecologia A.C., Biodiversidad y Sistemstica, Xalapa, Veracruz 91070, Mexico
  • Estacion de Biologia de Chamela, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, A.P. 21, San Patricio, Jalisco, 48980, Mexico
  • Departamento de Zoologia, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria, Distrito Federal, 04510, Mexico

Bibliografia

  • 1. Adams, D. C. , and E. Otarola-Castillo . 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4: 393–399. Google Scholar
  • 2. Adams, D. C. , F. J. Rohlf , and D. E. Slice . 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy, 24: 7–14. Google Scholar
  • 3. Aguirre, L. F. , A. Herrel , R. Van Damme , and E. Matthysen . 2002. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceedings of the Royal Society, 269B: 1271–1278. Google Scholar
  • 4. Aihartza, J. , D. Almenar , E. Salsamendi , U. Goiti , and I. Garin . 2008. Fishing behaviour in the long-fingered bat Myotis capaccinii (Bonaparte, 1837): an experimental approach. Acta Chiropterologica, 10: 287–301. Google Scholar
  • 5. Blomberg, S. P. , T. Garland, Jr. , and A. R. Ives . 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57: 717–745. Google Scholar
  • 6. Blood, B. R. , and M. R. Clark . 1998. Myotis vivesi. Mammalian Species, 588: 1–5. Google Scholar
  • 7. Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York, 435 pp. Google Scholar
  • 8. Dietz, C. , and O. Von Helversen . 2004. Illustrated identification key to the bats of Europe. Tuebingen and Erlangen (Germany), Electronic publication Ver. 1, 72 pp. Google Scholar
  • 9. Dumont, E. R. 2004. Patterns of diversity in cranial shape among plant-visiting bats. Acta Chiropterologica, 6: 59–74. Google Scholar
  • 10. Dumont, E. R. , and A. Herrel . 2003. The effects of gape angle and bite point on bite force in bats. Journal of Experimental Biology, 206: 2117–2123. Google Scholar
  • 11. Dumont, E. R. , A. Herrel , R. Medellin , J. A. Vargascon Treras , and S. E. Santana . 2009. Built to bite: cranial design and function in the wrinkle-faced bat. Journal of Zoology (London), 279: 329–337. Google Scholar
  • 12. Dumont, E. R. , L. M. Davalos , A. Goldberg , S. E. Santana , K. Rex , and C. C. Voigt . 2012. Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the Royal Society, 279B: 1797–1805. Google Scholar
  • 13. Evin, A. , M. Baylac , M. Ruedi , M. Mucedda , and J.-M. Pons . 2008. Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal. Biological Journal of the Linnean Society, 95: 529–538. Google Scholar
  • 14. Fenton, M. B. , and W. Bogdanowicz . 2002. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology, 80: 1004–1013. Google Scholar
  • 15. Findley, J. S. 1972. Phenetic relationships among bats of the genus Myotis. Systematic Zoology, 21: 31–52. Google Scholar
  • 16. Fish, F. E. , B. R. Blood , and M. R. Clark . 1991. Hydro dynam ics of the feet of fish-catching bats: influence of the water surface on drag and morphological design. Journal of Ex peri mental Zoology, 258: 164–173. Google Scholar
  • 17. Flannery, T. 1995. Mammals of the South-West Pacific & Moluccan Islands. Australian Museum, Reed Books, Chatswood, Australia, 464 pp. Google Scholar
  • 18. Freeman, P. W. 1979. Specialized insectivory: beetle-eating and moth-eating molossid bats. Journal of Mammalogy, 60: 467–479. Google Scholar
  • 19. Freeman, P. W. 1981. Correspondence of food habits and morphology in insectivorous bats. Journal of Mammalogy, 62: 166–171. Google Scholar
  • 20. Freeman, P. W. 1984. Frugivorous and animalivorous bats (Microchiroptera) dental and cranial adaptations. Biological Jour nal of the Linnean Society, 33: 249–272. Google Scholar
  • 21. Freeman, P. W. 2000. Macroevolution in Microchiroptera: recoupling morphology and ecology with phylogeny. Evolutionary Ecology Research, 2: 317–333. Google Scholar
  • 22. Gardner, A. (ed.). 2008. Mammals of South America. Volume 1: Marsupials, xenarthrans, shrews, and bats. University of Chicago Press, Chicago, 669 pp. Google Scholar
  • 23. Ghazali, M. , and I. Dzeverin . 2013. Correlations between hardness of food and craniodental traits in nine Myotis species (Chiroptera, Vespertilionidae). Vestnik Zoologii, 47: 67–76. Google Scholar
  • 24. Giannini, N. , and E. K. V. Kalko . 2005. The guild structure of animalivorous leaf-nosed bats of Barro Colorado Island, Panama, revisited. Acta Chiropterologica, 7: 131–146. Google Scholar
  • 25. Giannini, N. , J. W. Wible , and N. Simmons . 2006. On the cranial osteology of Chiroptera. I Pteropus (Megachiroptera: Pteropodidae). Bulletin of the American Museum of Natural History, 295: 1–134. Google Scholar
  • 26. Goloboff, P. , J. Farris , and K. C. Nixon . 2015. T.N.T. Tree Ana lysis Using New Technology. Available at http://www.zmuc.dk/public/phylogeny/TNT. Google Scholar
  • 27. Herrel, A. , A. De Smet , L. F. Aguirre , and P. Aerts . 2008. Morphological and mechanical determinants of bite force in bats: do muscles matter? Journal of Experimental Biology, 211: 86–91. Google Scholar
  • 28. Herring, S. W. , and S. E. Herring . 1974. The superficial mas seter and gape in mammals. American Naturalist, 108: 561–576. Google Scholar
  • 29. Kembel, S. W. , P. D. Cowan , M. R. Helmus , W. K. Cornwell , H. Morlon , D. D. Ackerly , S. P. Blomberg , and C. O. Webb . 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26: 1463–1464. Google Scholar
  • 30. Klingenberg, C. P. , K. Mebus , and J.-C. Auffray . 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evolution & Development, 5: 522–531. Google Scholar
  • 31. Larsen, R. J. , P. A. Larsen , H. H. Genoways , F. M. Catzeflis , K. K. Geluso , G. G. Kwiecinski , S. C. Pedersen , F. Simal , and R. J. Baker . 2012. Evolutionary history of Caribbean species of Myotis with evidence of a third Lesser Antillean endemic. Mammalian Biology, 77: 124–134. Google Scholar
  • 32. Laval, R. K. 1973. A revision of the Neotropical bats of the genus Myotis. Natural History Museum, Los Angeles County Science Bulletin, 15: 1–53 Google Scholar
  • 33. Law, N. , and C. A. Urquhart . 2000. Diet of the large-footed Myotis macropus at a forest stream roost in northern New South Wales. Australian Mammalogy, 22: 121–124. Google Scholar
  • 34. Lewis-Oritt, N. , R. A. Van Den Bussche , and R. J. Baker . 2001. Molecular evidence for evolution of piscivory in Noctilio (Chiroptera: Noctilionidae). Journal of Mammalogy, 82: 748–759. Google Scholar
  • 35. Lopez-Gonzalez, C. , S. J. Presley , R. D. Owen , and M. R. Willig . 2001. Taxonomic status of Myotis (Chiroptera: Vesper tilionidae) in Paraguay. Journal of Mammalogy, 82: 132–160. Google Scholar
  • 36. Marroig, G. , L. T. Shirai , A. Porto , F. B. Oliveira , and V. Conto . 2009. The evolution of modularity in the mammalian skull II. Evolutionary consequences. Evolutionary Biology, 36: 136–148. Google Scholar
  • 37. Monteiro, L. R. , and M. R. Nogueira . 2009. Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution, 64: 724–744. Google Scholar
  • 38. Monteiro, L. R. , and M. R. Nogueira . 2011. Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evolutionary Biology, 11: 1–23. Google Scholar
  • 39. Nogueira, M. R. , L. R. Monteiro , A. L. Peracchi , and A. F. B. De Araújo . 2005. Ecomorphological analysis of the masticatory apparatus in the seed-eating bats, genus Chiroderma (Chiroptera:Phyllostomidae). Journal of Zoology (London), 266: 355–364. Google Scholar
  • 40. Nogueira, M. R. , A. L. Peracchi , and L. Monteiro . 2009. Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23: 715–723. Google Scholar
  • 41. Norberg, U. M. , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing ada ptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society, 316: 335–427. Google Scholar
  • 42. Otálora-Ardila, A. , L. G. Herrera , J. J. Flores-Martínez , and C. C. Voigt . 2013. Marine and terrestrial food sources in the diet of the fish-eating Myotis (Myotis vivesi). Journal of Mammalogy, 94: 1102–1110. Google Scholar
  • 43. Pacheco, V. , and B. Patterson . 1992. Systematics and biogeographic analyses of four species of Sturnira (Chiroptera: Phyllostomidae), with emphasis on Peruvian forms. Memorias del Museo de Historia Natural UNMSM, 21: 57–81. Google Scholar
  • 44. Porto, A. , F. B. Oliveira , L. T. De Shirai , V. D. Conto , and G. Marroig . 2009. The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evolutionary Biology, 36: 118–135. Google Scholar
  • 45. R CORE TEAM. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Com puting, Vien na, Austria. Available at http://www.R-project.org/. Google Scholar
  • 46. Rohlf, J. 1990. An overview of image processing and analysis techniques for morphometrics. Pp. 37–80, in Proceedings of the Michigan morphometrics workshop ( J. Rohlf and F. L. Bookstein , eds.). Special Publication Number 2, The University of Michigan, Ann Arbor, Michigan, 380 pp. Google Scholar
  • 47. Rohlf, J. 2008a. tpsDig software, ver. 2.12. Computer program and documentation, Department of Ecology and Evolution, State University of New York, Stony Brook, N.Y. Google Scholar
  • 48. Rohlf, J. 2008b. NTSYSpc: Numerical Taxonomy System, ver. 2.20. Exeter Publishing, Ltd., Setauket. Google Scholar
  • 49. Ruedi, M. , and F. Mayer . 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21: 436–448. Google Scholar
  • 50. Ruedi, M. , B. Stadelmann , Y. Gager , E. J. P. Daouzery , C. M. Francis , L. Lin , A. Guillén-Servent , and A. Cibois . 2013. Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Molecular Phylogenetics and Evolution, 69: 437–449. Google Scholar
  • 51. Santana, S. , E. Dumont , and J. L. Davis . 2010. Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24: 776–784. Google Scholar
  • 52. Schnitzler, H.-U. , E. K. Kalko , I. Kaipf , and A. D. Grinnell . 1994. Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behavioral ecology and Sociobiology, 35: 327–145. Google Scholar
  • 53. Sheets, H. D. 2004. Morphometric software IMP. Department of Geology, SUNY at Buffalo, New York http. Available at http://canisius.edu/~sheets/morphsoft.html. Google Scholar
  • 54. Sheets, H. D. 2014. Morphometric software IMP 8.0. Department of Geology, SUNY at Buffalo, New York. Available at http://www3.canisius.edu/~sheets/IMP%208.htm. Google Scholar
  • 55. Siemers, B. M. , P. Stilz , and H.-U. Schnitzler . 2001. The acoustic advantage of hunting at low heights above water: behavioral experiments on the European ‘trawling’ bats Myotis capaccinii, M. dasycneme and M. daubentonii. Jour nal of Experimental Biology, 204: 3843–3854. Google Scholar
  • 56. Simmons, N. B. 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference ( D. E. Wilson and D. M. Reeder , eds.). Johns Hopkins University Press, Washington, D.C., 2142 pp. Google Scholar
  • 57. Stadelmann, B. , L. G. Herrera , J. Arroyo-Cabrales , J. J. Flores-Martinez , B. P. May , and M. Ruedi . 2004. Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi. Journal of Mammalogy, 85: 133–139. Google Scholar
  • 58. STATSOFT. 2011. STATISTICA (data analysis software system), version 10. StatSoft Inc., Tulsa, Oklahoma. Google Scholar
  • 59. Turnbull, W. D. 1970. Mammalian masticatory apparatus. Fieldiana Geology, 18: 149–356. Google Scholar
  • 60. Van Cakenberghe, V. , A. Herrel , and L. F. Aguirre . 2002. Evolutionary relationships between cranial shape and diet in Bats (Mammalia: Chiroptera). Pp. 205–223, in Topics in functional and ecological vertebrate morphology ( P. Aerts , K. D'Aout , A. Herrel , and R. Van Damme , eds.). Shaker Publishing, Maastricht, 359 pp. Google Scholar
  • 61. Whitaker, J. O., Jr. , and J. S. Findley . 1980. Foods eaten by some bats from Costa Rica and Panama. Journal of Mammalogy, 61: 540–544. Google Scholar
  • 62. Zelditch, M. L. , D. L. Swidersky , H. D. Sheets , and W. L. Fink . 2004. Geometric morphometrics for biologists: a primer. Elsevier, San Diego, CA, 437 pp. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-1f7506dd-c5d3-44d2-a9e3-b69309092a06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.