PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 4 |

Tytuł artykułu

The role of nitric oxide in skeletal muscle regeneration

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Essential processes in the regeneration of an injured muscle include proliferation of satellite cells and vascularization. Myogenesis and angiogenesis are prerequisites for the subsequent morphological and functional healing of the injured muscle, leading to the reconstruction of the damaged myocytes and vessels, restoration of the blood fl ow and restoration of the oxygen supply to the tissue. Nitric oxide (NO) plays a key role in satellite cells activation. It acts as a signal molecule and vasodilator, promotes expression genes for many growth factors being extracellular signals regulating the functions of the muscular, vascular and nervous systems. NO is produced by three isoenzymes, called nitric oxide synthases (NOS), present in skeletal muscle. The disturbance equilibrium between eNOS and iNOS activities results in pro-apoptotic NO activity and muscle atrophy. A recent study has shown a relationship between NO generation and delayed onset muscle soreness in response to intense resistance exercise. NO generation can be modulated by physical activity, systemic hypoxia (altitude training) or NO precursors such as L-arginine. The present review provides a current overview of NO effects on skeletal muscles and nutritional strategies based on L-arginine intake to aid muscle regeneration.

Wydawca

-

Rocznik

Tom

20

Numer

4

Opis fizyczny

p.173-179,fig.,ref.

Twórcy

  • Department of Biological Bases of Physical Education and Sport, University of Zielona Gora, Zielona Gora, Poland
autor
  • Department of Physiological Nutrition, Institute of Sport, Warsaw, Poland
autor
  • Department of Biological Bases of Physical Education and Sport, University of Zielona Gora, Zielona Gora, Poland
autor
  • University School of Physical Education, Poznan, Poland
autor
  • Department of Anti-Doping Research, Institute of Sport, Warsaw, Poland

Bibliografia

  • 1. Bescos R, Sureda A, Tur JA, et al. The effects of nitric- oxide-related supplements on human performance. Sports Med. 2012; 42: 99-117.
  • 2. Bogdan C. Nitric oxide and the regulation of gene expres¬sion. Trends Cell Biol. 2001; 11: 66-75.
  • 3. Filippin LI, Moreira AJ, Marroni NP, et al. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide. 2009; 21: 157-163.
  • 4. Tengan CH, Rodrigues GS, Godinho RO. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci. 2012; 13: 17160-17184.
  • 5. McConell GK, Bradley SJ, Stephens TJ, et al. Skeletal muscle nNOS protein content is increased by exercise training in humans. Am J Physiol Regul Integr Comp Physiol. 2007; 293: R821-R828.
  • 6. Lubos E, Handy DE, Loscalzo J. Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci. 2008; 13: 5323-5344.
  • 7. Adams V, Nehrhoff B, Späte U, et al. Induction of iNOS expression in skeletal muscle by IL-lbeta and NFKB activation: an in vitro and in vivo study. Cardiovasc Res. 2002; 54: 95-104.
  • 8. Pacher L, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007; 87: 315-424.
  • 9. Yamaki T, Wu CL, Gustin M et al. Rel A/p65 is required for cytokine-induced myotube atrophy Am J Physiol Cell Physiol. 2012; 303: C135-C142.
  • 10. Radak Z, Chung HY, Koltai E, et al. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2008; 7: 34-42.
  • 11. Radak Z, Naito H, Taylor AW, et al. Nitric oxide: Is it the cause of muscle soreness? Nitric Oxide. 2012; 26: 89-94.
  • 12. Zembron-Lacny A, Ziemann E, Kasperska A, et al. As¬sociation between cytokine activity and body composition in highly trained athletes. Medicina dello Sport. 2013; 66: 199-209.
  • 13. Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008; 2: 22-31.
  • 14. Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell. 2000; 11: 1859-1874.
  • 15. Szomor ZL, Appleyard RC, Murrell GA. Over-expression of nitric oxide synthases in tendon overuse. J Orthop Res. 2006; 24: 80-86.
  • 16. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39: 44-84.
  • 17. Wang MX, Murrell DF, Szabo C, et al. Nitric oxide in skeletal muscle: inhibition of nitric oxide synthase inhibits walking speed in rats. Nitric Oxide. 2001; 5: 219-232.
  • 18. Callapina M, Zhou J, Schmid T, et al. NO restores HIF- 1a hydroxylation during hypoxia: role of reactive oxygen species. Free Rad Biol Med. 2005; 39: 925-936.
  • 19. Ji LL, Gomez-Cabrera MC, Steinhafel N, et al. Acute ex¬ercise activities nuclear factor NF-KB signaling pathway in rat skeletal muscle. FASEB J. 2004; 18: 1499-1506.
  • 20. Lima-Cabello E, Cueavas MJ, Garatachea N, et al. Ec¬centric exercise induces nitric oxide synthase expression through nuclear factor-KB modulation in rat skeletal muscle. J Appl Physiol. 2010; 108: 575-583.
  • 21. Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol. 2001; 204: 3133-3139.
  • 22. Reid M. Plasticity in skeletal, cardiac, and smooth muscle. Invited review: redox modulation of skeletal muscle con-traction: what we know and what we don't. J Appl Physiol. 2001; 90: 724-731.
  • 23. Lira VA, Brown DL, Lira AK, et al. Nitric oxide and AMPK cooperatively regulate PGC-1a in skeletal muscle cells. J Physiol. 2010; 588: 3551-3566.
  • 24. Olesen J, Kiilerich K, Pilegaard H. PGC-1a-mediated ad¬aptations in skeletal muscle. Pflugers Arch Eur J Physiol. 2010; 460: 153-162.
  • 25. Radak Z, Pucsok J, Mecseki S, et al. Muscle soreness induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med. 1999; 26: 1059-1063.
  • 26. Zembron-Lacny A, Naczk M, Gajewski M, et al. Changes of muscle-derived cytokines in relation to thiol redox status and reactive oxygen and nitrogen species. Physiol Res. 2010; 59: 945-951.
  • 27. Chiang J, Shen YC, Wang YH, et al. Honokiol protects rats against eccentric exercise-induced skeletal muscle damage by inhibiting NF-KB induced oxidative stress and inflammation, Eur J Pharmacol. 2009; 610: 119-127.
  • 28. Pullinen T, Mero A, Huttunen P, et al. Resistance exercise induced hormonal response under the influence of delayed onset muscle soreness in men and boys. Scand J Med Sci Sports. 2011; 21: 184-194.
  • 29. Di Pasquale MG. Amino acids and proteins for the athlete. CRC Press Taylor & Francis Group (2nd Edition) 2008.
  • 30. Wells BJ, Mainous AG, Everett CJ. Association between dietary arginine and C-reactive protein. Nutrition. 2005; 21: 125-130.
  • 31. Saito H, Trocki O, Wang SL, et al. Metabolic and immune effects of dietary arginine supplementation after burn. Arch Surg. 1987; 122: 784-789.
  • 32. Matsumoto K, Mizuno M, Mizuno T, et al. Branched- chain amino acids and arginine supplementation at¬tenuates skeletal muscle proteolysis induced by moderate exercise in young individuals. Int J Sports Med. 2007; 28: 531-538.
  • 33. Filippin LI, Cuevas MJ, Lima E, et al. Nitric oxide regu¬lates the repair of injured skeletal muscle. Nitric Oxide. 2011; 24: 43-49.
  • 34. Morici G, Zangla D, Santoro A, et al. Supramaximal exer¬cise mobilizes hematopoietic progenitors and reticulocytes in athletes. Am J Physiol Regul Integr Comp Physiol. 2005; 289: R1496-R1503.
  • 35. Yang HT, Prior BM, Lloyd PG et al. Training-induced vascular adaptations to ischemic muscle. J Physiol Phar¬macol. 2008; 59: 57-70.
  • 36. Kimura H, Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Polonica. 2003; 50: 49-59.
  • 37. Cheng A, Wang S, Cai J, et al. Nitric oxide acts in a positive feedback loop with BDNF to regulate neuronal progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol. 2003; 258: 319-333.
  • 38. Wilber RL. Altitude training and athletic performance. Human Kinetics Pub Inc. 2003.
  • 39. Hinckson EA, Hamlin MJ, Wood MR, et al. Game per¬formance and intermittent hypoxic training. Br J Sports Med. 2007; 41: 537-539.
  • 40. Hamlin MJ, Hellemans J. Effect of intermittent nor- mobaric hypoxic exposure at rest on haematological, physiological, and performance parameters in multi-sport athletes. J Sports Sci. 2007; 15: 431-441.
  • 41. Katayama K, Matsuo H, Ishida K, et al. Intermittent hypoxia improves endurance performance and submaxi¬mal exercise efficiency. High Alt Med Biol. 2003; 4: 291¬304.
  • 42. Vogt M, Hoppeler H. Is hypoxia training good for muscles and exercise performance? Prog Cardiovasc Dis. 2010; 52: 525-533.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-19a8b4fb-4c28-4749-b60c-3856697d512f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.