PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 01 |

Tytuł artykułu

Expression of SYMRK affects the development of arbuscular mycorrhiza in tobacco roots

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
SYMRK is a plant receptor-like kinase with a role in root endosymbiosis. Heterologous expression of SYMRK from non-legumes can complement the loss-offunction effects of the mutant symrk in legumes. However, it is unclear whether the development of arbuscular mycorrhiza (AM) is affected along with the enhanced expression of SYMRK. In the present study, the full-length LsSYMRK gene was cloned from Lathyrus sativus. Overexpression of LsSYMRK in tobacco roots was essential for AM development, and affected the expression of genes which are involved in the potential signaling pathway of AM. In addition, the pattern of hyphal penetration changed from radial to longitudinal when hyphae reached the root cortex. Furthermore, overexpression of LsSYMRK increased tobacco biomass in the presence of AM fungi. These results suggest that increased expression of SYMRK in roots of AM-infected tobacco can increase the colonization and biomass.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

01

Opis fizyczny

p.85-94,fig.,ref.

Twórcy

autor
  • The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 100871 Beijing, China
autor
  • The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 100871 Beijing, China
autor
  • The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 100871 Beijing, China

Bibliografia

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of realtime quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496
  • Baek SH, Chung IM, Yun SJ (2001) Molecular cloning and characterization of a tobacco leaf cDNA encoding a phosphate transporter. Mol Cells 11:1–6
  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957. doi:10.1104/pp.124.3.949
  • Biermann B, Linderman RG (1981) Quantifying vesicular–arbuscular mycorrhizae—a proposed method towards standardization. New Phytol 87:63–67. doi:10.1111/j.1469-8137.1981.tb01690.x
  • Bucher M, Wegmuller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507. doi:10.1016/j.pbi.2009.06.001
  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601. doi:10.1093/Jxb/Erf013
  • Capoen W, Goormachtig S, De Rycke R, Schroeyers K, Holsters M (2005) SrSymRK, a plant receptor essential for symbiosome formation. Proc Natl Acad Sci USA 102:10369–10374. doi:10.1073/pnas.0504250102
  • Chen AQ, Hu J, Sun SB, Xu GH (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831. doi:10.1111/j.1469-8137.2006.01962.x
  • Demchenko K, Winzer T, Stougaard J, Parniske M, Pawlowski K (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol 163: 381–392. doi:10.1111/j.1469-8137.2004.01123.x
  • Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M (2007) Lysophosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318:265–268. doi:10.1126/science.1146487
  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo´ P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966. doi:10.1038/nature00842
  • Fan QJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542. doi:10.1007/s11738-011-0789-6
  • Feddermann N, Boller T, Salzer P, Elfstrand S, Wiemken A, Elfstrand M (2008) Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi. Planta 227:671–680. doi: 10.1007/s00425-007-0649-1
  • Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216: 148–154. doi:10.1007/s00425-002-0917-z
  • Fogg DN, Wilkinson NT (1958) The colorimetric determination of phosphorus. Analyst 83:406–414. doi:10.1039/AN9588300406
  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420. doi:10.1105/tpc.108.059014
  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932. doi: 10.1073/pnas.0710618105
  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42. doi:10.1146/annurev.micro.58.030603.123749
  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231. doi:10.1126/science.227.4691.1229
  • Kai M, Takazumi K, Adachi H, Wasaki J, Shinano T, Osaki M (2002) Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Sci 163:837–846. doi:10.1016/S0168-9452(02)00233-9
  • Khade SW, Rodrigues BF, Sharma PK (2010) Arbuscular mycorrhizal status and root phosphatase activities in vegetative Carica papaya L. varieties. Acta Physiol Plant 32:565–574. doi:10.1007/s11738-009-0433-x
  • Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229. doi:10.1105/tpc.105.032714
  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828. doi:10.1073/pnas.0803499105
  • Kosuta S, Held M, Hossain MS, Morieri G, Macgillivary A, Johansen C, Antolin-Llovera M, Parniske M, Oldroyd GE, Downie AJ, Karas B, Szczyglowski K (2011) Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. Plant J 67:929–940. doi:10.1111/j.1365-313X.2011.04645.x
  • Latef AAHA, He CX (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225. doi:10.1007/s11738-010-0650-3
  • Liu ZH, Xia M, Poovaiah BW (1998) Chimeric calcium/calmodulindependent protein kinase in tobacco: differential regulation by calmodulin isoforms. Plant Mol Biol 38:889–897. doi:10.1023/A:1006019001200
  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–64. doi:10.1038/Nature09622
  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:497–506. doi:10.1371/journal.pbio.0060068
  • Medina MJH, Gagnon H, Piche Y, Ocampo JA, Garrido JMG, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998. doi:10.1016/S0168-9452(03)00083-9
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08047.x
  • Murray JD, Muni RRD et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252. doi:10.1111/j.1365-313X.2010.04415.x
  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. doi:10.1038/nrmicro1987
  • Parniske M, Groth M, Takeda N, Perry J, Uchida H, Draxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL (2010) NENA, a Lotus japonicus homolog of sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526. doi:10.1105/tpc.109.069807
  • Peterson RL, Hersey RE, Brisson JD (1978) Embedding softened herbarium material in Spurr’s resin for histological studies. Stain Technol 53:1–9. doi:10.3109/10520297809111436
  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular- arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–161. doi:10.1016/S0007-1536(70)80110-3
  • Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61:482–494. doi: 10.1111/j.1365-313X.2009.04072.x
  • Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3:182–187. doi:10.1016/S1369-5266(00)00062-5
  • Rik OC, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R (2011) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–912. doi: 10.1126/science.1198181
  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. doi: 10.1038/nprot.2008.73
  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20. doi:10.1104/pp.103.024380
  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi:10.1016/S0022-5320(69)90033-1
  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962. doi:10.1038/nature00841
  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092
  • Tan ZJ, Hu YL, Lin ZP (2012) Expression of NtPT5 is correlated with the degree of colonization in tobacco roots inoculated with Glomus etunicatum. Plant Mol Biol Rep. doi:10.1007/s11105-011-0402-6
  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. doi:10.1007/s00572-005-0033-6
  • Wang B, Yeun LH, Xue JY, Liu Y, Ane JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525. doi:10.1111/j.1469-8137.2009.03137.x
  • Weerasinghe RR, Bird DM, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci USA 102:3147–3152. doi:10.1073/pnas.0407926102
  • Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216. doi:10.1046/j.1365-3040.1998.00280.x
  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304. doi:10.1007/s11738-009-0407-z
  • Yoshida S, Parniske M (2005) Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation. J Biol Chem 280:9203–9209. doi:10.1074/jbc.M411665200
  • Zhu H, Chen T, Zhu M, Fang Q, Kang H, Hong Z, Zhang Z (2008) A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol 148:337–347. doi:10.1104/pp.108.119164

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-194cd9ea-adda-4541-a9b3-9eaab50f99b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.