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S u m m a r y. The problem of a weighted least-squares 
approximation of viscoelastic material by Maxwell model is 
discussed when the noise-corrupted time-measurements of the 
relaxation modulus obtained in relaxation test experiment are 
accessible for identifi cation. In the previous paper it has been 
shown that even when the true relaxation modulus description 
is completely unknown, the optimal Maxwell model parameters 
can be derived from the measurement data sampled randomly 
according to appropriate randomization. In this paper an iden-
tifi cation algorithm leading to the best model when only a re-
laxation modulus data are accessible is derived using a concept 
of random choice of the sampling instants. The stochastic-type 
convergence analysis is conducted both for corrupted as well as 
noise free relaxation modulus measurements and the exponen-
tial convergence rate is proved. Experimental numerical results 
for fi ve-parameter Maxwell model are provided. Applying the 
scheme proposed the four-parameter Maxwell models of an 
confi ned cylindrical specimen of the beet sugar root are deter-
mined for a few sets of relaxation modulus measurement data 
and the convergence of the sequence of best model parameters 
is demonstrated. The procedure has been successfully tested 
using both artifi cial and experimental data.

K e y  w o r d s : relaxation test, Maxwell model, identifi ca-
tion algorithm, experiment design

INTRODUCTION

The classical Maxwell model [14] is a viscoelastic 
body that stores energy like a linearized elastic spring 
and dissipates energy like a classical fl uid dashpot. The 
generalized Maxwell model, which is used to describe 
the relaxation modulus of linear viscoelastic materials, 
consists of a spring and n Maxwell units connected in 
parallel. Maxwell models are used frequently to describe 
viscoelasticity of polymers [1, 6], concrete [13], soils [5], 
rocks [8], rubber [20], glass [17], foods [16] and biologi-
cal materials [2, 9]. 

Maxwell models described by a sum of exponential 
functions. Fitting a sums of exponentials to empirical data 

is a very old problem in system identifi cation theory [7, 10]. 
Although a lot of methods are known for determining ex-
ponential sum models, in particular for fi nding the optimal 
least-squares exponential sum approximations to sampled 
data, the effi cient tools for Maxwell model determination 
are still desirable and this is the purpose of this study.

In empirical sciences there is an increasing use of 
mathematical models to describe various physical phe-
nomena. The work in modelling of physical phenomena 
neatly partitions into two pieces: the work in acquiring 
information (measurements) from the real system, and the 
overhead involved in determining the best model. More 
often than not, this second part of the work is dominated 
by system identifi cation methods. Whence, members of 
the physical systems researchers community have been 
consumers of system identifi cation algorithms. Thus, their 
needs have set some research directions for the system 
identifi cation community. Simultaneously, this symbiotic 
relationship has entered a new phase, in which the new 
advances in system identifi cation contribute to building 
a better and better models and they are also setting new 
research agendas for the physical systems researchers 
community.

In the previous paper [19] an idea of measurement 
point-independent approximation of a relaxation modulus 
of linear viscoelastic materials within the class of general-
ized Maxwell models, when the integral weighted square 
error is to be minimized and the true material descrip-
tion is completely unknown, is presented. In this paper 
a simple identifi cation algorithm providing the strongly 
consistent estimate of the optimal model is given. Next, 
the rate of convergence is discussed for the case when 
the measurements are perfect or corrupted by additive 
noises. The results of simulation experiments for fi ve 
parameter Maxwell model are presented and the identi-
fi cation algorithm is applied for computing the Maxwell 
model of an specimen of the beet sugar root.
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OPTIMAL IDENTIFICATION 
OF MAXWELL MODEL

In the previous paper [19] the problem of an approxi-
mation of relaxation modulus G(t) of linear viscoelastic 
material by generalized Maxwell model: 

( ) j

n
t

M j

j 1

G t, E e E
−ν

∞
=

= +∑g , (1)

with the vector of model parameters defi ned as: 

[ ]1 1 ∞= … …g
T

n nE E v v E , (2)

where: E
j
, v

j
 and E  are the elastic modulus, relaxa-

tion frequencies and equilibrium modulus, respectively, 
is considered under the assumption that the exact math-
ematical description of the true relaxation modulus G(t) is 
completely unknown. The value of G(t) can be, however, 
measured with a certain accuracy for any given value of 
the time t T, where T = [0,T] and 0<T<  or T = R

+
; here 

R
+
 = [0, ). The restriction that the model parameters are 

nonnegative and confi ned must be given to satisfy the 
physical meaning, i.e. g G, where the admissible set of 
parameters G is compact subset of the space 2 1+

+
nR .

Let T
1
, ,T

N
 are independent random variables with 

a common probability density function (t) whose sup-
port is . Let ( )= +i i iG G T Z  denote measurements of 
the relaxation modulus G = G(T

i
) obtained in a certain 

stress relaxation test performed on the specimen of the 
material under investigation, i = 1, ,N. Here Z

i
 are ad-

ditive measurement noises.
As a measure of the model (1) accuracy the global 

approximation error of the form:

( ) ( ) ( ) ( )2
= −  ∫g gMQ G t G t, t dt

T

ρ , (3)

where a chosen weighting function (t) 0 is a density 

on T, i.e., ( ) 1t dtρ =∫T , is applied. From practical rea-

sons the global index Q(g) is replaced by the following 
empirical one: 

( ) ( )
2

1

1 N

N i M i

i

Q G G T ,
N =

 = − ∑g g . (4)

Therefore, the classical least-squares problem for 
Maxwell model is obtained. 

The problem of the relaxation modulus G(t) optimal 
approximation within the class of Maxwell models (1) 
consists in determining the admissible parameter mini-
mizing Q(g):

( )arg min Q∗

∈
=

g
g g

G
, (5)

Here arg min g G Q(g) denotes the vector g that 
minimizes Q(g) on the set G. The respective empirical 
task is as follows:

( )N Narg min Q
∈

=
g

g g
G

. (6)

Under standard assumptions concerning the relaxa-
tion modulus and noises:
Assumption 1.  The relaxation modulus G(t) is bounded 

on , i.e. sup
t T

G(t) M< ,
Assumption 2.  The measurement noises Z

i
 are bounded, 

i.e. Z
i

<  for i = 1, ,N,
Assumption 3.  {Z

i
} is a time-independent sequence of 

independent identically distributed (i.i.d.) 
random variables with zero mean and 
a common fi nite variance 2,

it is shown in [19], that Maxwell model which is as-
ymptotically (when the number of measurements tends to 
infi nity) independent on the particular sampling instants 
t

i
can be derived from the set of relaxation modulus time-

data by introducing a simple randomization. Namely, it is 
proved that if the Assumptions 1-3 hold and T

1
, ,T

N
 are 

independently, at random selected from , each according 
to probability distributions with density (t), then both 
for perfect as well as for the additive noise corrupted 
relaxation modulus measurements: 

1N w.p. as N∗→ → ∞g g  (7)

and for all t T:

( ) ( ) 1M N MG t, G t, w.p. as N∗→ → ∞g g , (8)

where w.p.1 means “with probability one”. Thus, 
the model parameter g

N
 is strongly consistent estimate 

of the parameter g*. Moreover, since the model G
M

(t,g)
is Lipschitz on G uniformly in t T, then the almost sure 
convergence of g

N
 to g* in (7) implies that: 

( ) ( ) 0 1M N M
t

sup G t, G t, w.p. as N∗

∈
− → → ∞g g

T

. (9)

Thus, G
M

(t, g
N
) is a strongly uniformly consistent 

estimate of the best model G
M

(t, g). 
Summarizing, when the Assumptions 1-3 are satis-

fi ed, the arbitrarily precise approximation of the optimal 
Maxwell model (with the parameter g*) can be obtained 
(almost everywhere) as the number of mesurements N
grows large, despite the fact that the real description of 
the relaxation modulus is completely unknown.

IDENTIFICATION ALGORITHM

Taking into account the convergence results (7)-(9) 
the calculation of the approximate value g

N
 of optimal 

Maxwell model parameter g* involves the following steps. 
1. Select randomly from the set T the sampling instants  

t
1
, ,t

N
, each t

i
 independently, according to the prob-

ability distribution on T with the density given by the 
weighting function (t) in (3).

2. Perform the stress relaxation test, record and store the 
relaxation modulus measurements ( )iG t , i = 1, ,N,
corresponding to the chosen points t

i
0.

3. Solve the optimization task (6) and compute the Max-
well model parameter g

N
.
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4. In order to ascertain if g
N
 is a satisfactory approxima-

tion of g* enlarge the set of data to the extent N N>>
repeating Steps 1 and 2. 

5. Execute Step 3 for the new set of data determining 
Ng .

6. Examine if 
2N N ε− <g g , for , a small positive 

number. If not, put N N=  and go to Step 4. Other-
wise, stop the procedure taking g

N
 as the approximate 

value of g*.
Remark. The stopping rule from Step 6 can be re-

placed by a less restrictive one, based on testing, whether 
( ) ( )N NN NQ Q ε− <g g  holds. Both the stopping rules 

considered correspond with those commonly used in the 
numerical minimization techniques.

CONVERGENCE ANALYSIS

Taking account of (7) the question immediately arises 
how fast does g

N
 tend to g* as N grows large. The dis-

tance between the Maxwell model parameters g
N

and 
g* will be estimated in the sense of quality difference 
Q(g*) – Q(g

N
) . We shall examine how fast, for given >0, 

does ( ) ( ){ }g gNP Q Q ε∗ − ≥  tend to zero as N increases. 

On the basis of inequality (11) from [4] we obtain for 

noise case the following bound:

( ) ( ){ } ( )2 2ˆg g 2 8NP Q Q exp N Mε ε∗− ≥ ≤ − , (10)

where M̂ is such that the next estimation is valid 
for any g G:

( ) ( ) ( )2 2

2 2

g g

ˆ2

i i M iG T Z G T , Q

M c M

σ

δ δ σ

  + − − +   

≤ + + + =ɶ . (11)

Here a positive constant M̃ is such that: 

( ) ( ) ( )2
g gi M iG T G T , Q M − − ≤ 

ɶ  (12)

for any g G, i = 1, ,N, and a positive constant c is
defi ned by the inequality G(T

i
) – G

M
(T

i
,g) c which holds 

for every g G, i = 1, ,N. The existence of M̃ follows 
immediately from the Assumptions 1 and 2, Property 3 
and the fact that, the weighting function (t) 0 is a den-
sity on T. In view of Assumption 1 and Property 2 the 
positive constant c there exists and can be evaluated 
without a diffi culty. Note also, that in the noiseless case 
the inequality (10) takes especially simple form:

( ) ( ){ } ( )2 2g g 2 8NP Q Q exp N Mε ε∗− ≥ ≤ − ɶ . (13)

The inequalities (13) and (10) show some connec-
tions between the convergence rate and the number of 
measurements N as well as the measurement noises. In 
particular, if  is fi xed, then the bound (10) tends to zero 
at exponential rate as N increases. Note also, that the rate 
of convergence is the higher the lower is M̂, thus by (11) 

the lower are  and 2, i.e. the measurement noises are 
weaker. This is not a surprise since, with large noises, 
the measurements are not much adequate to the true 
relaxation modulus. Notice, however, that for fi xed >0 
both for noiseless as noise case: 

( ) ( ){ } ( )( )1 2 2 2ˆg g 2 8NP Q Q N exp N M
ααε ε−∗− ≥ ≤ −

with 0 <1/2 still tends to zero as N  in quasi-ex-
ponential rate. 

We now present the results of the numerical experi-
ments. Both the asymptotic properties (as the number 
of measurements N ) as well as the infl uence of the 
measurement noises on solution will be studied. 

EXPERIMENTAL STUDIES

Consider viscoelastic material whose relaxation 
modulus is described by:

( ) ( )220 181
3 2 5 2 3 0 2

2

t tG t e erfc t .− += − + , (14)

where erfc(t) is the complementary error function [11]. 
The time interval T = [0;0,8] seconds has been taken for 
the experiment in view of the modulus G(t) (14) course. 
The measurement points t

i
 are selected randomly, each t

i

independently according to the uniform distribution on 
T. The 5 parameter Maxwell model of the form:

( ) 1 2
1 2

v t v t
MG t E e E e E− −

∞= + + ,

has been taken for numerical studies. The relaxation 
modulus ( ) ( ) ( )i i iG t G t z t= +  has been sampled in N
sampling instants during the time period T.

In order to study the infl uence of the noises on 
the Maxwell model parameters {z

i
} have been gener-

ated independently by random choice with normal 
distribution with zero mean value and variance 2;
 = 0.005,0.0075,0.01,0.02 is taken for experiment. Such 

measurement noises are even strongest than the true 
disturbances recorded for the plant materials (see [18; 
Chapter 5.5.4]). For the analysis of asymptotic properties 
of the scheme N = 50,100,500,1000,5000,10000 has been 
used in the experiment. The experiment and next the 
computation of the optimal model have been repeated 
n = 100 times for every pair (N, 2). The distance between 
the optimal model parameters: ‘empirical’ g

N
 and ‘ideal’ 

g* has been estimated by standardized mean error defi ned 
for n element sample as:

( )2

2 2
1

1
g g g

n

N, j

j

ERR N,
n

σ ∗ ∗

=

= −∑ , (15)

where g
N,j

 denote the model parameter g
N
 determined 

for j – th experiment repetition for a given pair (N, 2), 
j = 1, ,n. Here ||  ||

2
 denotes the Euclidean norm in the 

space R2n+1. Relationship of ERR(N, 2) (15) on N and 2

is depicted in Figure 1. The ranges of variation of the 
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index ERR(N, 2) obtained in the simulation experiment 
are given in table 1. In Figure 1 we can see that for small 
and middle noises and N 500 the error ERR(N, 2) does 
not depend essentially on the number of measurements. 
For small and middle noises the index ERR(N, 2) do 
not exceed 2%, however, for large noises (  = 0.02) this 
error exceeds 10%.

2σ

( )2σN,ERR

2.5⋅10-5 5.625

⋅10-5

1⋅10-4 
4⋅10-4

N 

50
 

100
500

1000 5000 
10000 

0 

0.01 

0.02 

0.03 

0.04 

Fig. 1. The index ERR(N, 2) as a function of N and 2

2σ

( )2σN,ERRQN
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⋅10-5

1⋅10-4 

[4⋅10-4]

*0.3

N 
50 

100 500 

10000 
5000 

1000 

0 

5·10-5 

1·10-4 

Fig. 2. The mean square approximation error of the relaxa-
tion modulus measurements ERRQ

N
(N, 2); the notation [4 10

–4]*0.3 is used to describe the function 0.3 ERRQ
N
(N, 2) for 

2 = 4 10–4.

To estimate the approximation error of the relaxation 
modulus measurements for n-element sample the follow-
ing index (cf. defi nition (4)) is taken:

( ) ( )

( )

2

1

2

1 1

1
g

1
g

n

N N N, j

j

n N

i, j M i, j N, j

j i

ERRQ N, Q
nN

G G t ,
nN

σ
=

= =

= =

 = − 

∑

∑∑ ,

where ( )i, j i, j i, jG G t z= +  denote the relaxation mod-
ulus measurements for j – th experiment repetition for 
a given pair (N, 2), j = 1, ,n. The index ERRQ

N
(N, 2)

as a function of N and 2 is depicted in Figure 2. We 
can see that ERRQ

N
(N, 2) does not depend essentially 

on the number of measurements both for small as well 
as large noises. The algorithm ensures very good qual-
ity of the measurements approximation even for large 
noises (see table 1).

The mean integral error of the relaxation modulus 
G(t) (14) approximation is defi ned as:

( ) ( )2

1

1 n

N, j

j

ERRQ N, Q
n

σ
=

= ∑ g ,

where the global integral error is given by (3). The 
error ERRQ(N, 2) is decreasing function of the number 
of sampling points and the number of model summands 
as depicted in Figure 3. The interpretation of Figure 
3 becomes quite clear when we take into account the 
convergence analysis conducted. As we have shown, the 
global integrated index Q(g) converges exponentially 
both with the increase of the number of measurements 
N as well as with the decrease of the noise variance 2  – 
compare the inequality (10) and the defi nition of M̂ (10).

( )2σN,ERRQ

2σ
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⋅10-5

1⋅10-4 
4⋅10-4
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2·10-5 

Fig. 3. Mean integral approximation error of the relaxation mo-
dulus ERRQ(N, 2)

Ta b l e  1 .  The ranges of variation of the approximation error indices used in the simulation experiment for the number of 
measurements N 500

 = 0,005  = 0,0075  = 0,01  = 0,02

ERR(N, 2) 0,00408÷0,0128 0,0087÷0,01757 0,0182÷0,0213 0,12175÷0,1284

ERRQ
N
(N, 2) 2,47E-5÷2,51E-5 5,56E-5÷5,63E-5 9,88E-5÷9,9E-5 1,17E-4÷1,18E-4

ERRQ(N, 2) 0,0189÷0,0193 9,98E-3÷0,018 9,167E-3÷0,017 1,2E-3÷4,518E-3
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Ta b l e  2 .  Maxwell model (16) parameters and the values 
of identifi cation index Q

N
(g

N
); random choice of the sam-

pling instants

N Q
N
(g

N
)

Model parameters

E
1,N

[MPa]
E

2,N

[MPa]
v

1,N
[s–1]

v
2,N

[s–1]

15 7,914E-5 10,2607 0,5257 4,6823E-4 0,0489

20 2,978E-4 10,3447 0,5097 5,4625E-4 0,0737

25 8,38E-4 10,4025 0,5292 6,3646E-4 0,1004

40 2,233E-3 10,3763 0,5886 5,8039E-4 0,0963

50 1,867E-3 10,3553 0,6049 5,5898E-4 0,0886

75 4,575E-4 10,3388 0,5736 5,3957E-4 0,0793

100 2,527E-4 10,2973 0,5409 4,9971E-4 0,0598

150 2,596E-4 10,2879 0,5363 4,8541E-4 0,0582

200 2,912E-4 10,2936 0,5342 4,9343E-4 0,0587

250 3,476E-4 10,2877 0,5427 4,7722E-4 0,0584

300 2,541E-4 10,284 0,5398 4,8225E-4 0,0561

350 2,615E-4 10,2785 0,5369 4,7334E-4 0,0557

400 2,851E-4 10,2786 0,5383 4,7207E-4 0,0564

The next example shows how the proposed iden-
tifi cation scheme can be used in the Maxwell model 
identifi cation of real material.

MAXWELL MODEL OF THE SUGAR 
BEET SAMPLE

Let us consider again the sample of the root of sugar 
beet Janus variety [3] studied in the example in [19]. The 
stress relaxation experiment performed by Go acki and 
co-workers is described in details in [3] and the way how 
the experiment data has been preliminary proceeded 
is circumscribed in paper [19]. The sampling points t

i

have been generated independently by random choice 
with uniform distribution in time interval [0;95] seconds, 
consecutively, for N from the set N1 = {15,20,25,40,50,
75,100,150,200,250,300,350,400}, and the respective re-
laxation modulus measurements have been selected from 
the whole set of measurement data. Next, the optimal 
four-parameter Maxwell models:

( ) 1 2
1 2

t t
MG t E e E eν ν− −= + , (16)

were determined for each N. The parameters of the 
optimal models and the respective values of empirical 
index Q

N
(g) (4) are given in Table 2. The fast convergence 

of the model parameters and the model quality index is 
illustrated in Figures 4 and 5, respectively. In Figure 6 
the distance d

N
 = ||g

N
–g

[N]
||

2
, between the successive model 

parameters g
N
 is also shown as a function of N, where 

[N] is a direct predecessor of N in the set N.
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Fig. 4. The optimal Maxwell model parameters as a function of the number of measurements N; random choice of the sampling 
instants
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( )NNQ g   
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0 
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Fig. 5. The identifi cation index Q
N
(g

N
) as a function of the number of measurements N; random choice of the sampling instants
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N 

Nd    

0 100 200 300 400 
0 

0,05 

0,1 

Fig. 6. The distance d
N
 between the two successive Maxwell 

model parameters g
N
 as a function of the number of measure-

ments N; random choice of the sampling instants

The fi tting of the relaxation modulus computed ac-
cording to the best Maxwell models G

M
(t, g

N
) to experi-

ment data is shown for a few values of the number of 
measurements in Figure 7, where the measurements ( )iG t

are also marked. It can be seen from Figure 7 that four 
parameter Maxwell models are necessary for almost 
excellent fi tting the data, if the time instants t

i
 are chosen 

in appropriate way.
The differences in the convergence speed between 

the cases of random and equidistant experiment data are 

demonstrated by comparison of Figures 5,6 and 2 in [19], 
Figures 7 and 3 in [19]. Thus, the general conclusion is 
that the choice of the sampling instants has fundamental 
meaning for the Maxwell model obtained. 

FINAL REMARKS

1. The approximation of the optimal Maxwell model 
can be derived from relaxation modulus data sampled 
randomly according to respective randomization. The 
approximate model parameters are strongly consistent 
estimate of the parameters of that Maxwell model, 
which is independent of particular sampling instants 
used in relaxation test. 

2. It is worth of noticing that the resulting identifi cation 
procedure is very useful in application because it does 
not require any other experimental technique more 
sophisticated than the independent random sampling 
of time instants t

i
 from the set T according to a sta-

tionary rule.
3. When the set {t

i
} is opened to manipulation during the 

data collection, it is an important experiment design 
issue to take appropriate sampling instants. Therefore, 
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11 
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Time t  [s] 

( )itG
 

[MPa] 

( )NM t,G g
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Time t  [s] 
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10 

11 

Time t  [s] 

N=50 

0 20 40 60 80 100 

10 

11 

Time t  [s] 
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11 
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( )NM t,G g
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N=250 
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10 

11 
N=400 

Time t  [s] 
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10 

11 
( )itG

 
[MPa] 

( )NM t,G g

 [MPa] 

Fig. 7. The relaxation modulus measurements ( )iG t  (points) and the approximate Maxwell models G
M

(t,g
N
) (solid line); random 

choice of the sampling instants
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new deeper insight in the stress relaxation experiment 
can be achieved. The approach proposed lies, in fact, 
in widely understood data mining framework [15].

4. The paper is concerned with the Maxwell model but 
the proposed experiment design scheme can also be 
successfully applied to identifi cation of generalized 
Kelvin-Voigt model of the creep compliance measure-
ments obtained in creep test [14].
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O PLANOWANIU EKSPERYMENTU DLA IDENTYFIKACJI 

MODELU MAXWELLA NA PODSTAWIE TESTU 

RELAKSACJI NAPR

S t r e s z c z e n i e . Przedmiotem pracy jest problem opty-
malnej, w sensie najmniejszej sumy kwadratów aproksyma-
cji modu u relaksacji materia ów liniowo lepkospr ystych
uogólnionym modelem Maxwella na podstawie zak óconych
pomiarów modu u relaksacji zgromadzonych w te cie relak-
sacji napr e . Zaproponowano algorytm identyfi kacji oparty 
o koncepcj  odpowiedniej randomizacji punktów pomiarowych 
prowadz cy do wyznaczenia modelu Maxwella o parametrach 
asymptotycznie niezale nych od punktów pomiarowych nawet 
wówczas, gdy rzeczywisty opis modu u relaksacji jest ca ko-
wicie nieznany. Przeprowadzono analiz  zbie no ci modelu 
dla dok adnych i zak óconych pomiarów i wskazano na jego 
wyk adnicz  zbie no . Dla pi cio-parametrowego modelu 
Maxwella podano wyniki eksperymentów numerycznych. Wy-
znaczono cztero-parametrowe modele Maxwella próbki bura-
ka cukrowego i pokazano zbie no  ci gu parametrów modelu 
optymalnego.

S o w a  k l u c z o w e : test relaksacji napr e , model Ma-
xwella, algorytm identyfi kacji, planowanie eksperymentu


