PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 69 | 4 |

Tytuł artykułu

Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants

Treść / Zawartość

Warianty tytułu

PL
Zróżnicowany wpływ nanocząstek na wzrost roślin, ze szczególnym uwzględnieniem roślin uprawnych

Języki publikacji

EN

Abstrakty

EN
The article describes the current knowledge about the impact of nanoparticles on plant development with a particular emphasis on crop plants. Nanotechnology is an intensively developing field of science. This is due to the enormous hopes that have been placed on the achievements of nanotechnology in various areas of life. Increasingly, it has been noted that apart from the future benefits of nanotechnology in our everyday life, nanoparticles (NPs) may also have adverse effects that have not been sufficiently explored and understood. Most analyses to date have been focused on the influence of nanomaterials on the physiological processes primarily in animals, humans and bacteria. Although our knowledge about the influence of NPs on the development of plants is considerably smaller, the current views are presented below. Such knowledge is extremely important since NPs can enter the food chain, which may have an influence on human health.
PL
W artykule przedstawiono aktualny stan wiedzy na temat wpływu nanocząstek na rozwój roślin, ze szczególnym uwzględnieniem roślin uprawnych. Nanotechnologia jest intensywnie rozwijającą się dziedziną nauki, co wynika z ogromnych nadziei pokładanych w osiągnięcia nanotechnologii w różnych dziedzinach życia. Coraz częściej wskazuje się, że poza dobrodziejstwami jakie w codziennym życiu przynoszą nam nanomateriały, mogą one również wywoływać niepożądane efekty, a te nie są jeszcze w pełni zbadane i wyjaśnione. Większość przeprowadzonych do tej pory analiz koncentruje się na wpływie nanomateriałów na procesy fizjologiczne przede wszystkim u zwierząt, ludzi i bakterii. Wiedza na temat wpływu nanocząstek (NPs) na rozwój roślin jest znacznie skromniejsza, a obecne badania i poglądy przedstawione zostały w poniższej pracy. Wiedza ta jest bardzo ważna, ponieważ NPs mogą wejść do łańcucha pokarmowego, co może mieć wpływ na zdrowie ludzi.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

69

Numer

4

Opis fizyczny

Article 1694 [9p.], ref.

Twórcy

  • Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
autor
  • Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
autor
  • Institute of Materials Science, University of Silesia in Katowice, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
autor
  • Institute of Materials Science, University of Silesia in Katowice, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
  • Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland

Bibliografia

  • 1. Feynman RP. There’s plenty of room at the bottom. Eng Sci. 1960;23(5):22–36.
  • 2. Taniguchi N. On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering; 1974 Aug 26–29; Tokyo, Japan. Tokyo: Japan Society of Precision Engineering; 1974. p. 18–23.
  • 3. Dietz KJ, Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16(11):582–589. http://dx.doi.org/10.1016/j.tplants.2011.08.003
  • 4. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem. 2008;27:1825–1851. http://dx.doi.org/10.1897/08-090.1
  • 5. Ruzer LS. Exposure and dose: health effect studies associated with nanometer aerosols. J Nanomed Nanotechnol. 2011;2:120. http://dx.doi.org/10.4172/2157-7439.1000120
  • 6. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76. http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100432
  • 7. Begum P, Ikhtiari R, Fugetsu B. Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomater. 2014;4(2):203–221. http://dx.doi.org/10.3390/nano4020203
  • 8. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59(8):3485–3498. http://dx.doi.org/10.1021/jf104517j
  • 9. Buzea C, Blandino IIP, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR172. http://dx.doi.org/10.1116/1.2815690
  • 10. Gittins DI, Bethell D, Nichols RJ, Schiffrin DJ. Diode-like electron transfer across nanostructured films containing a redox ligand. J Mater Chem. 2000;10:79–83. http://dx.doi.org/10.1039/A902960E
  • 11. Mink JE, Hussain MM. Sustainable design of high – performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano. 2013;7(8):6921–6927. http://dx.doi.org/10.1021/nn402103q
  • 12. Landers J, Turner JT, Heden G, Carlson AL, Bennett NK, Moghe PV, et al. Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. Adv Healthc Mater. 2014;3(11):1745–1752. http://dx.doi.org/10.1002/adhm.201400042
  • 13. Whitney JR, Rodgers A, Harvie E, Carswell WF, Torti S, Puretzky AA, et al. Spatial and temporal measurements of temperature and cell viability in response to nanoparticle – mediated photothermal therapy. Nanomedicine (Lond). 2012;7(11):1729–1742. http://dx.doi.org/10.2217/nnm.12.66
  • 14. Zhang BT, Zheng X, Li HF, Lin JM. Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta. 2013;784(19):1–17. http://dx.doi.org/10.1016/j.aca.2013.03.054
  • 15. Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150(1):5–22. http://dx.doi.org/10.1016/j.envpol.2007.06.006
  • 16. Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A. Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal. 2014;2014:641759. http://dx.doi.org/10.1155/2014/641759
  • 17. Sokół JL. Nanotechnologia w życiu człowieka. Economy and Management. 2012;4(1):18–29.
  • 18. Zuverza-Mena N, Armendariz R, Peralta-Videa JR and Gardea-Torresdey JL. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci. 2016;7:90. http://dx.doi.org/10.3389/fpls.2016.00090
  • 19. Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, et al. Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem. 2016. http://dx.doi.org/10.1016/j.plaphy.2016.04.024
  • 20. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon N Y. 2015;81:607–619. http://dx.doi.org/10.1016/j.carbon.2014.09.095
  • 21. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect ofsilver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf. 2014;104:302–309. http://dx.doi.org/10.1016/j.ecoenv.2014.03.022
  • 22. Lin D, Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut. 2007;150(2):243–250. http://dx.doi.org/10.1016/j.envpol.2007.01.016
  • 23. Shaw AK, Hossain Z. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere. 2013;93(6):906–915. http://dx.doi.org/10.1016/j.chemosphere.2013.05.044
  • 24. An J, Zhang M, Wang S, Tang J. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. Food Science and Technology. 2008;41:1000–1007. http://dx.doi.org/10.1016/j.lwt.2007.06.019
  • 25. Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS. Effects of nano-iron oxide particles on agronomic traits of soybean. Int J Biosci. 2010;2(2):112–113. http://dx.doi.org/10.12692/ijb/3.9.267-272
  • 26. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ. 2012;1(431):197–208. http://dx.doi.org/10.1016/j.scitotenv.2012.04.073
  • 27. Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009;32(5):577–584. http://dx.doi.org/10.1111/j.1365-3040.2009.01952.x
  • 28. Feichtmeier NS, Walther P, Leopold K. Uptake, effects and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res Int. 2015;22(11):8549–8558. http://dx.doi.org/10.1007/s11356-014-4015-0
  • 29. Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ. 2014;15(472):834–841. http://dx.doi.org/10.1016/j.scitotenv.2013.11.018
  • 30. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66(3):303–310. http://dx.doi.org/10.1007/s10725-011-9649-z
  • 31. Musante C, White JC. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol. 2010;27(9):510–517. http://dx.doi.org/10.1002/tox.20667
  • 32. López-Moreno ML, Avilés L, Pérez NG, Álamo Irizarry B, Perales O, Cedeno-Mattei Y, et al. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ. 2016:45–52. http://dx.doi.org/10.1016/j.scitotenv.2016.01.063
  • 33. Santos AR, Miguel AS, Tomaz L, Malhó R, Maycock C, Vaz Patto MC, et al. The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnology. 2010;8:24. http://dx.doi.org/10.1186/1477-3155-8-24
  • 34. Wang A, Zheng Y, Peng F. Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. J Spectrosc. 2014;169245:1–5 http://dx.doi.org/10.1155/2014/169245
  • 35. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar S. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc. 2011;21:2057–2068. http://dx.doi.org/10.1007/s10895-011-0904-5
  • 36. Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 2008;10:713–717. http://dx.doi.org/10.1039/B805998E
  • 37. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, et al. Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small. 2009;5(10):1128–1132. http://dx.doi.org/10.1002/smll.200801556
  • 38. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5(1):493–499. http://dx.doi.org/10.1021/nn102344t
  • 39. Etxeberria E, Gonzalez P, Baroja-Fernández E, Romero JP. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells. Plant Signal Behav. 2006;1(4):196–200. http://dx.doi.org/10.1007/978-3-642-32463-5_5
  • 40. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221–3227. http://dx.doi.org/10.1021/nn900887m
  • 41. Carpita N, Sabularsed D, Montezinos D, Delmer DP. Determination of the pore size of cell walls of living plant cells. Science. 1979;205(4411):1144–1147. http://dx.doi.org/10.1126/science.205.4411.1144
  • 42. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem. 2010;58(6):3689–3693. http://dx.doi.org/10.1021/jf904472e
  • 43. Gui X, Deng Y, Rui Y3, Gao B, Luo W, Chen S, et al. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res Int. 2015;22(22):177169–17723. http://dx.doi.org/10.1007/s11356-015-4976-7
  • 44. Peng J, Xu W, Teoh CL, Han S, Kim B, Samanta A, et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J Am Chem Soc. 2015;137(6):2336–2342. http://dx.doi.org/10.1021/ja5115248
  • 45. Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology. 2015;9(3):271–278. http://dx.doi.org/10.3109/17435390.2014.900583
  • 46. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 2013;7(3):323–337. http://dx.doi.org/10.3109/17435390.2012.658094
  • 47. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY. Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Firoz M, editors. Nanotechnology and plant sciences. Nanoparticles and their impact on plants. Cham: Springer; 2015: p. 19–35. http://dx.doi.org/10.1007/978-3-319-14502-0_2

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-18c54870-6416-48a8-a383-0dd0e17d4bf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.