PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 65 | 4 |

Tytuł artykułu

Quantitative microbial risk assessment of Cryptosporidium in bivalve samples from Manila Bay, Philippines

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the Philippines, consumption of bivalves is very common due to its year-round availability and cheap price. However, many consume bivalves as lightly-cooked or raw. This might pose health hazards because bivalves are filter-feeders which act as vehicles for transmission of several pathogens such as the protozoan parasite Cryptosporidium, the causative agent of cryptosporidiosis. Cryptosporidiosis in humans is manifested by profuse diarrhea and abdominal pain. To determine the risk of acquiring cryptosporidiosis from consumption of bivalves, quantitative microbial risk assessment (QMRA) should be done. This study aimed to determine the risk associated with the consumption of bivalves which are contaminated with Cryptosporidium oocysts. The results indicate that consumption of at least 21 grams of cooked bivalves contaminated with at least 0.1% viable oocysts might pose a risk to consumers, especially to immunocompromised individuals. This estimated risk of infection exceeded the United States Environmental Protection Agency (US EPA) standards (1.0×10⁻⁴). Results call for drive of decision-makers to establish an educational or treatment program to reduce the incidence of gastrointestinal infections of the consumers. Improvement of sanitation techniques and hygienic practices will contribute to the decrease of occurrence of the disease.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

65

Numer

4

Opis fizyczny

p.315–320,ref.

Twórcy

autor
  • Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
  • Pathogen-Host-Environment Interactions Research Laboratory, Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
  • Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
  • Pathogen-Host-Environment Interactions Research Laboratory, Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
autor
  • International Environmental Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of South Korea
autor
  • Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
  • Pathogen-Host-Environment Interactions Research Laboratory, Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines

Bibliografia

  • [1] Current W.L., Garcia L.S. 1991. Cryptosporidiosis. Clinical Microbiology Reviews 4: 325-358. doi:10.1128/cmr.4.3.325
  • [2] Hoxie N.J., Davis J.P., Vergeront J.M., Nashold R.D., Blair K.A. 1997. Cryptosporidiosis-associated mortality following a massive waterborne outbreak in Milwaukee, Wisconsin. American Journal of Public Health 87: 2032-2035. doi:10.2105/ajph.87.12.2032
  • [3] Colford J.M., Tager I.B., Hirozawa A.M., Lemp G.F., Aragon T., Petersen C. 1996. Cryptosporidiosis among patients infected with human immunodeficiency virus: factors related to symptomatic infection and survival. American Journal of Epidemiology 144: 807-816.
  • [4] Bouzid M., Hunter P.R., Chalmers R.M., Tyler K.M. 2013. Cryptosporidium pathogenicity and virulence. Clinical Microbiology Reviews 26: 115-134. doi:10.1128/cmr.00076-12
  • [5] Ryu H., Abbaszadegan M. 2008. Long-term study of Cryptosporidium and Giardia occurrence and quantitative microbial risk assessment in surface waters of Arizona in the USA. Journal of Water and Health 6: 263-273. doi:10.2166/wh.2008.030
  • [6] Miller W.A., Atwill E.R., Gardner I.A., Miller M.A., Fritz H.M., Hedrick R.P., Conrad P.A. 2005. Clams (Corbicula fluminea) as bioindicators of fecal contamination with Cryptosporidium and Giardia spp. in freshwater ecosystems in California. International Journal for Parasitology 35: 673-684. doi:10.1016/j.ijpara.2005.01.002
  • [7] Hohweyer J., Dumètre A., Aubert D., Azas N., Villena I. 2013. Tools and methods for detecting and characterizing Giardia, Cryptosporidium, and Toxoplasma parasites in marine mollusks. Journal of Food Protection 76: 1649-1657.
  • [8] Potasman I., Paz A., Odeh M. 2002. Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clinical Infectious Diseases 35: 921-928. doi:10.1086/342330
  • [9] Pagoso E.J., Rivera W.L. 2017. Cryptosporidium species from common edible bivalves in Manila Bay, Philippines. Marine Pollution Bulletin 119: 31-39. doi:10.1016/j.marpolbul.2017.03.005
  • [10] De la Peña L.O., Pagoso E.J., Rivera W.L. 2017. Characterization of Cryptosporidium isolated from Asian green mussels sold in wet markets of Quezon City, Philippines. Philippine Agricultural Scientist 100: 45-54.
  • [11] Regli S., Rose J.B., Haas C.N., Gerba C.P. 1991. Modeling risk for pathogens in drinking water. Journal of the American Water Works Association 83: 76-84.
  • [12] Haas C.N., Rose J.B., Gerba C.P., Regli S. 1993. Risk assessment of virus in drinking water. Risk Analysis 13: 545-552.
  • [13] Haas C.N., Rose J.B., Gerba C.P. 1999. Quantitative Microbial Risk Assessment. John Wiley & Sons, Inc. New York, USA.
  • [14] Mena K.D., Pillai S.D. 2002. An approach for developing quantitative risk-based microbial standards for fresh produce. Journal of Water and Health 6: 359-364.
  • [15] Rose J.B., Hass C.N., Regli S. 1991. Risk assessment and control of waterborne giardiasis. American Journal of Public Health 81: 709-713.
  • [16] Ryu H., Alum A., Alvarez M., Mendoza J., Abbaszadegan M. 2005. Microbial quality and risk assessment of Rio Grande basin in the US-Mexican Border Region. Journal of Water and Health 3: 209-218.
  • [17] Haas C.N. 1983. Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. American Journal of Epidemiology 118: 573-582. doi:10.1093/oxfordjournals.aje.a11366
  • [18] Moriarty E.M., Duffy G., McEvoy J.M., Caccio S., Sheridan J.J., McDowell D., Blair I.S. 2005. The effect of thermal treatments on the viability and infectivity of Cryptosporidium parvum on beef surfaces. Journal of Applied Microbiology 98: 618-623. doi.org/10.1111/j.1365-2672.2004.02498.x
  • [19] Aguirre J., Greenwood S.J., McClure J.T., Davidson J., Sanchez J. 2016. Effects of rain events on Cryptosporidium spp. levels in commercial shellfish zones in the Hillsborough River, Prince Edward Island, Canada. Food and Waterborne Parasitology 5: 7-13. doi.org/10.1016/j.fawpar.2016.08.003
  • [20] Amparo J.M., Talavera M.T., Barrion A.S., Mendoza M.E., Dapito M.B. 2017. Assessment of fish and shellfish consumption of coastal barangays along the Marilao-Meycauayan-Obando River System (MMOR S), Philippines. Malaysian Journal of Nutrition 23: 263-277.
  • [21] Department of Health. 1998. Implementing rules and regulations of Chapter IV “Markets and abbattoirs” of the Code on Sanitation of the Philippines.
  • [22] Digal L. 2001. An analysis of the structure of the Philippine retail food industry. Philippine Journal of Development 51: 15-54.
  • [23] US EPA (United States Environmental Protection Agency). 1989. National primary drinking water regulations: filtration, disinfection, turbidity, Giardia lamblia, viruses, Legionella, and heterotrophic bacteria; final rule. Federal Register 54, 124, 27486.
  • [24] Ishikawa T., Ushijima K. 2002. Water-related problems in urban areas. In: Metro Manila. In search of a sustainable future. (Eds. T. Ohmachi, E.R. Roman). Philippines University Press: 252-266.
  • [25] Zintl A., Proctor A. F., Read C., Dewaal T., Shanaghy N., Fanning S., Mulcahy G. 2008. The prevalence of Cryptosporidium species and subtypes in human faecal samples in Ireland. Epidemiology and Infection 137: 270-277. doi:10.1017/s0950268808000769
  • [26] Wilkes G., Edge T., Gannon V., Jokinen C., Lyautey E., Medeiros D., Lapen D.R. 2009. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Research 43: 2209-2223. doi:10.1016/j.watres.2009.01.033
  • [27] Daniels M.E., Smith W.A., Schmidt W., Clasen T., Jenkins M.W. 2016. Modeling Cryptosporidium and Giardia in ground and surface water sources in rural India: Associations with latrines, livestock, damaged wells, and rainfall patterns. Environmental Science and Technology 50: 7498-7507. doi:10.1021/acs.est.5b05797Putigani
  • [28] Putignani L., Menichella D. 2010. Global distribution, public health and clinical impact of the protozoan pathogen Cryptosporidium. Interdiscipli nary Perspectives on Infectious Diseases 2010: 1-39. doi:10.1155/2010/753512
  • [29] Mota A., Mena K.D., Soto-Beltran M., Tarwater P.M., Chaidez C. 2009. Risk assessment of Cryptosporidium and Giardia in water irrigating fresh produce in Mexico. Journal of Food Protection 72: 2184-2188. doi:10.4315/0362-028x-72.10.2184

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-18707b5c-1ab1-47f2-8bf7-0702a3708277
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.