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Summary. 

of viscoelastic materials on the basis of the stress data from 

non-ideal ramp tests where a time-variable strain rate is followed 

by a constant strain is considered. The loading phase strain is 

described by the third order polynomial of time. The aim of the 

point rule and generalized Simpson rule are used to derive a new

method. The approximations of the relaxation modulus at suc-

cessive time instants are determined on the basis on the stress 

measurements in at most three appropriately chosen sampling 

points. The properties of the relaxation modulus model deter-

mined according to the proposed method are examined under 

standard assumptions concerning the relaxation modulus of the 

material and the experiment. The method developed is a basis
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In current engineering practice it is common to deal 

with either the uniaxial or shear time-dependent relaxa-

tion modulus of viscoelastic materials [1-5, 12,15-

18,27]. For linear viscoelastic materials the relaxation 

modulus is the stress, which is induced in the material 

when the unit step strain is imposed. Unfortunately, that 
deformation mode cannot be achieved experimentally 

without invoking stress waves [ ]. Thus, the relaxation 

modulus is not directly accessible by means of straight-
forward measurement method. It is usually recovered 

from the experimental data of the stress relaxation pro-

a-
tion modulus is still to compute the modulus from the 

ideal step-strain case rule. Unfortunately, according to 

the „ten-times-rule”, or equivalently, “factor-of-

10’rule”, this step-strain assumption is acceptable only 

if the time is at least ten times larger than the initial 

if the time is at least ten times larger than the initial 
Thus, in prac-

tice quite often the first seconds of the relaxation data 

are ignored to account for the finite loading time of 
deformation [ ].

To take into account the finite initial loading time in 

the real non-ideal relaxation tests a few methods have 

been proposed during the last several years [ -

21,24- ]. 28] developed a gen-

eral method, which in the case of linear viscoelasticity 

takes the form of very simple rule, where the ‘true’ 

relaxation time is delayed of half loading time. For the 

case of constant loading rate a few methods for relaxa-
tion modulus identification has been proposed: the 

], the differential rule proposed by Sorvari 

] and the latest method based on the 

general trapezoidal rule presented in the papers [ , 24]. 

In practice, however, to inertia effects the assump-

tion that the ramp loading is approximated to be linear 

may fail [ , , ]. F ], 

see also [ ], it is assumed in this paper that the 

initial loading phase strain of the relaxation test is de-

scribed by the third order polynomial of the time. To

develop a fast method to approximate identification of 

relaxation modulus on the basis of such non-ideal ramp 

strain history data, in which the relaxation modulus at 

arbitrary time instant is determined using only few 
stress measurements, is the goal of the paper. 

the mathematical properties of the problem and using 

two known numerical quadrature rules: midpoint rule 
and generalized Simpson’s rule a new identification 

method is proposed, in which the approximation of the 

relaxation modulus at arbitrary time is determined on 

the basis of the stress measurements in at most three 

appropriately chosen sampling points. It is proved, un-

der mild assumptions concerning the relaxation modulus 

of the material and the experiment that the resulted 
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1.

We consider a linear viscoelastic material subjected 

to small deformations for which the uniaxial, nonaging 

and izotropic stress-strain equation can be represented 

[11, 14]:

( ) = ( ) ( ) , (1)

where: ( ) and ( ) denotes the stress and stain, respec-

tively, and ( ) is the time-
relaxation modulus. i-

cal description of the relaxation modulus ( ) is com-

pletely unknown, but the value of ( ) can be measured
with a certain accuracy for any given value of the time 

, where = [0, ] and 0 < < .

2.

such materials is by two-phase stress relaxation test, 

where the strain increases during the loading time inter-

val [0, ] until a predetermined strain is reached at 

ramp-time , after which that strain is maintained 
constant at that value [ ]. In ideal ramp-test [ ] the 

strain increases along a constant strain rate path. How-

ever, the constant strain rate in the loading phase is 

usually unrealizable due to experimental limitations [ , 

], see also [21; 

Ramp III] and [ ], we assume that the strain in non-

ideal ramp-test is described by the function: 

( ) =

0 < 0

+ + 0 < (2)

where: the non-ideal ramp-strain parameters are: 

= = =

( )

where: the non-ideal ramp-strain parameters are: 

= , = and = . The strain 

( ) (2) is shown in Figure 1, where the ideal step-strain 
( ) and the ideal ramp-test strain ( ) corresponding 

to linear loading phase strain, are also depicted.

Fig. 1. Step-strain, ideal and non-ideal ramp strain; = 1 [ ],

= 0,001 –

Suppose that the non-ideal ramp test (2) performed 

on the real material resulted in a set of the stress meas-

urements. Identification consists in estimating of the 

relaxation modulus of viscoelastic material described by 

the e m-
mon practice is to calculate the relaxation modulus by 

the rule ( ) = ( ) , which in view of (1) is valid 
only for infinitely short initial loading time (for ideal 

step- „ten-times-rule” that step-

strain assumption is acceptable only for 10 . Thus, 

for the times lower than the ten loading time , the 

classical rule ( ) = ( ) may fail. To illustrate the 
errors of such approach the following example is con-

sidered.

Fig. 2. Stress in ideal and non-ideal ramp-tests and in step-
strain relaxation test

Example.

, ]:

( ) = ( ) ,

where: following [ ] = 10 [ ], the dimensionless 

parameter = 0,5 [ ] and the relaxation time =

3 [ ]. The strain = 0,001 [ ] and the ramp-time 

= 1 [ ]. The stress ( )

for non-ideal ramp test (2) is plotted in Figure 2, where 

the related stress ( ) for ideal step-strain relaxation 

test and the material response ( ) after the application 

of a constant loading strain rate are also given. The 

differences between the three signals ( ), ( ) and 
( ) are characterized by the relative absolute percent 

errors summarized in Table 1 for some selected points 

of time.

Time  t [s]

The errors are big at short time, and decrease with 

the time > . The differences for the two signals ( )

and ( ) at the time point exceed of the ideal 

relaxation test stress ( ), compare Figure 2, at the 

time = 10 the differences are of 5% degree and they 

> 100

der mild assumptions concerning the relaxation modulus 

of the material and the experiment that the resulted 

model is monotonically decreasing function with at 

most one discontinuity point. 

,



Ta b l e  1 .  Stress differences between the ideal and non-ideal ramp-test and step strain relaxation test 

Time 

rrors Ramp time 

[%] , 82, ,844 , , , , , , , 4, 1,458

[%] 54,25 , , , 14,851 15, 4,251 1, ,118 , , 1, -

Ramp time

[%] , 81, ,844 ,428 1,871 12,511 ,121 ,575 ,45 , ,822 2,

[%] , , 18, 5,518 , , , 2,442 , , , , -

Ramp time

[%] , 78,871 , 24, , , 55,845 , 22,271 , 11, 2,

[%] 52, , 15, 8, , , 2, 4, ,417 ,211 , , -
( )

( )

time = 10 the differences are of 5% degree and they 

are lesser than 1,5% only at > 100 . However, as the 
two curves approach each other at sufficiently long 

times greater than 100 , the difference is not negligi-

ble as 100 . Thus, the „ten-times-rule”, according 
to which the relaxation modulus is calculated as 
( ) = ( ) for 10 , may fail. The errors for

the signal ( ) are not as big as for ( ), but the accu-

racy in ( ) approximation is also insufficient, especial-

ly in short time region < . 
Thus, both using the ramp-test data as ideal step-

strain data and calculating the relaxation modulus using 

the formula ( ) = ( ) , as well as even applying 

the known rules derived for ideal ramp test of
loading rate, leads to unacceptable errors. What is espe-

cially important, these errors are unacceptably big in the
time intervals of the greatest dynamics of the stress 

relaxation process. The presented results convincingly 

prove, that using the ramp test data ( ) as an ideal 

step-strain data ( ) and even as the ideal ramp test 

data ( ), in many cases fails to give satisfactory ap-
proximation of the relaxation modulus of the material. 

In this paper the following assumption will be taken.

Assumption. The relaxation modulus ( ) is double 

differentiable function such that:

( ) 0,
( )

0,
( )

0 > 0. (4)

The above assumption seems to be quite natural. In 

particular, it takes account of the course of the experi-

mentally recorded relaxation modulus. This assumption, 

taken for example in [8, , 22], is satisfied by commonly 

used rheological models, such that 

and Peleg models. Note also that from (4) it fol-

lows immediately that ( ) strictly monotonically non-
increasing (decreasing) continuous convex function.

On the basis of (1) and (2), taking into account that 
( ) = 0 < 0

( )

On the basis of (1) and (2), taking into account that 
( ) = 0 for any < 0, the stress during the initial load-

ing phase of the stress relaxation test in the interval of time

0 < < is described by the following equation:

( ) = ( ) + ,

which, taking into account the definitions of the pa-

rameters and , can be rewritten as:

( ) = ( , , ) , (5)

where the integrand:

( , , ) = ( ) ( )

is introduced for brevity. We approximate the integral 

Unfortunately, no general 

methods can be recommended for numerical integration. 

The choice of the suitable method must be done on a 

case-by case basis, depending on the integrand function 

properties. (0, , ) = 0, and since 

< 0, then for an arbitrary 0 < < we have 
( , , ) > 0; here > 0, 0 < . The partial 

derivative is given by the expression:

( , , )
= ( ) ( ) + ( )(2 ).

T , it is clear that if 

< 2, then ( , , ) > 0 and
( , , ) 0 at = 2 for any time variable

0 < . Hence, if 2, that is 2, then 

the integrand ( , , ) is monotonically increasing 

function of . The course of an exemplary integrand
( , , ) as a function of the variable 0 for 

-time = 1 [ ] and time 

instant = Thus the simplest 

method of numerical integration, the midpoint rule, is 

appropriate for numerical approximation of the integral 

(5) for 2. r-

,
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We now wish to find the formula for relaxation

modulus identification for the time interval > 4. 

To do this, note that on the basis of equations (1) and 

(2) in the second constant strain phase of the relaxation 

test, i.e. for > the stress is given by the expression:

( ) = ( ) ( ) , (8)

or in equivalent form:

( ) = ( , , ) ,

where the integrand ( , , ) is given by . Now, for 

an arbitrary > also for the upper limit of integration 
( , , ) = 0. The function ( , , )

is continuous and non-negative definite for any 

and, as it may be easily verified on the basis of the sta-

tionary point condition ( ) ( ) =
( )(2 ) achieves the maximum for

such that 2 < < . inte-

grand function ( , , ) for material , the time 

instant = 2 as a function of variable 0 is 

illustrated in Figure The paraboidal nature of this 

function makes reasonable the choice of Simpson’s rule 

to evaluate the integral (8). We use both the simple 

to evaluate the integral (8). We use both the simple 
three-point and the generalized five-point rule. y-

ing simple Simpson’s rule we obtain the formula:

( ) ,

and whence:

( ) ,

-Phillips formula. d-

ing the finite time interval [0, ] into four equal subin-

tervals and applying the generalized Simpson’s rule,
after simple algebraic manipulations we have:

( ) 3 + 3 +

+2 ,

whence, in view of the definition of the parameter , we

finally obtain:

Fig. 3. The function ( , , ) for 

= 1 [ ]: (a) = , (b) = 2 , 0

+2

Similar to (11), we have:

+
3 ( ) + 3 +

+2
. (12)

Combining the expressions , (11) and (12) treated as 

the equalities and applying the next equations, which 

:

+ = ( ),

+ = ,

after simple algebraic manipulations we obtain:

( )
3

4
=

8

3
( )

7

3
+
4

+

+ + ,

which is the desired result. Thus we have achieved the 

formula for relaxation modulus approximate identifica-

tion for > 4. 

It is assumed here that relaxation modulus is mono-

tonically decreasing function. The monotonicity of the 

relaxation modulus model obtained by the proposed 
method is resolved by the two consecutive properties. 

Property 1. is satisfied, the stress 

0 < 2

(5) for 2. r-
ra’s equation of the first kind (1), the midpoint rule is 

numerically stable. -point rule to 

integral of the right-hand side of (5) we obtain:

( ) ,

whence, for 0 < 2, the following expression 
follows immediately:

( ) = ( ).

It is easy to verify that the above implies for 0 < 4
the rule:

( )( ) =
( )

(2 ). (7)

++2

+ +2

(11)

( ) 3 + 3 + +2

.

( )

.

++2

(12)++2 .

+ 3 ( ) + 3 + +2
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Property 1. is satisfied, the stress 

measurements are noise-free and for any 0 < 2

the following inequality holds:

2 ( ) + ( ) 0, (14)

then the relaxation modulus model ( )( ) is mono-

tonically decreasing function in the time interval 

0 < . 

Proof. On the basis of (7) we have:

( )( ) =
( )( ) ( )( )

( )
. (15)

In order to examine the monotonicity of the model 
( )( ) (7) it is enough to check the sign of the nu-

merator of right-hand side of (15), i.e. of the expression:

( ) = 2 (2 )( ) (2 )(2 3 ).

Taking into account (5) and , after suitable change of 
variables, we obtain:

( ) = ( )( )( ) . (17)

Whence, n-

cerning the differentiation of the integral with the limits 

depending on the variable we have:

( ) = ( )(2 2 ) . (18)

Using (17) and (18) we can rewrite the function ( )

:

( ) = (4 + 2 4 ) ( ) + (7

8 2 ) ( ) + (3 2 ) ( )

where: ( ) = ( ) , ( ) = ( )   

and ( ) = ( ) . 

( ) we have for an arbi-

trary and :

( ) ( ) + ( )( ).

Hence, the next inequality follows:

( ) 2 ( ) + ( ) ( ) = 2 ( ).

In order to estimate the integral ( ) it is enough to 
( ) is

concave. Thus, for an arbitrary and such that

2 2 the following inequality holds:

( ) ( ) + ( ) + ( ) ( ), (21)

on the basis of which, we obtain the upper bound:

( ) 2 ( ) + ( ) + ( ) ( ) =

( ) 2 ( ) + ( ) + ( ) ( ) =

= 2 ( )

and therefore, taking into account the inequality ,

we have:
( ) ( ). (22)

In a similar fashion, using once more the inequality

(21), it may be proved that the next inequality holds:

( ) ( ). ( )

Since the polynomial (7 8 2 ) of variable 

is negative definite for any 0 < 4 and the ex-

pression 4 + 2 4 = 2 [ + ( ) ] is

positive definite for any > 0, taking into account that 

the parameter < 0, by combining , (22) and ( )

we obtain for an arbitrary 0 < 4 the following 
estimation:

( ) ( ) < 0.

Which finally concludes the proof.

Remark 1. It is easy to check that for model 

the condition (14) takes the form ( ) 1 1 , 

therefore is satisfied for every 0 < 2, whenever 

( 2 ) 1 + 1. In particular, if = 0,5 (see 

, then the condition (14) means that 18 , 
and is not difficult to satisfy.

Remark 2. ( ) = we 

have = 1. Thus, the condition (14) is satisfied, when-

ever 4 . 

Having known even rough estimation of the relaxa-

tion time of the material we can choose without difficul-

ties the ramp-time so as to satisfy the condition (14). 
Property 2. is satisfied and the stress 

measurements are noise-free, then the relaxation modu-

lus model ( )( ) is monotonically decreasing func-

tion in the time interval < . 

Proof. ( ) for

> . On differentiating formula (8) we arrive at the

following expression:

( ) = ( ) ( )

and then, on differentiating equation (8) with respect to 

twice, we obtain:

( ) = ( ) ( ) .

Since the parameter < 0 and the ramp-time > 0, in

view of t , the above implies the follow-

ing inequalities: ( ) < 0 and ( ) > 0. Thus, for any 

> the stress derivative ( ) is negative definite 
monotonically increasing function. Since on the basis of

:

( ) = ( ) + +

,
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both the viscoelastic material and the experiment, that 

for noise-free stress measurements determined model 

of the relaxation modulus is monotonically decreasing 
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particular the model error analysis for ideal and noise 
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1. Cho J.R., Song J.I., 2007: Swaging process of power 

g

2. Choi S., Cha S.W., Oh B.H., 2010:

viscoelastic behavior for early-age concrete based on 

-

Cui T., Chao Y.J., Van Zee J.W., 2012: Stress relax-

4.

Characterization of the linearly viscoelastic behavior of 

5. Eitelberger J., Bader T.K., De Borst K., Jäger A., 

2012:



-

Stankiewicz A., 2012: Determination of the relaxation 

modulus on the basis of the ramp-test stress data. In-

24. Stankiewicz A., 2012:

[in Polish].

25. Stankiewicz A., 2013:

-

terials from non-ideal ramp-test histories, -

(submitted for publication).

Tscharnuter D., Jerabek M., Major·Z., Lang R.W., 

2011: On the determination of the relaxation modulus of 

of Time-Dependent

27. Wang S., Qi J., Yao X., 2011: Stress relaxation charac-

teristics of warm frozen clay under triaxial conditions. 

28. Zapas L.J., Craft T., 1965: Correlation of large lon-

gitudinal deformations with different strain histories. 

Streszczenie. -

-

-

-

eksperymentu.

-




