PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 4 |

Tytuł artykułu

The role of glycogen synthase kinase-3β in glioma cell apoptosis induced by remifentanil

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of malignant glioma treatment is to inhibit tumor cell proliferation and induce tumor cell apoptosis. Remifentanil is a clinical anesthetic drug that can activate the N-methyl-D-aspartate (NMDA) receptor. NMDA receptor signaling activates glycogen synthase kinase-3β (GSK-3β). Discovered some 32 years ago, GSK-3β was only recently considered as a therapeutic target in cancer treatment. The purpose of this study was to assess whether remifentanil can induce the apoptosis of C6 cells through GSK-3β activation. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was used to detect cell viability. Hoechst 33342 staining and flow cytometry were used to detect cell apoptosis. The effect of GSK-3β activation was detected using a GSK-3β activation assay kit and 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective small molecule inhibitor of GSK-3β. The MTT assay indicated that remifentanil induced C6 cell death in a concentration- and time-dependent manner. Hoechst 33342 staining and flow cytometry showed that remifentanil significantly induced C6 cell apoptosis. The measurement of GSK-3β activation showed that remifentanil increased the cellular level of GSK-3β. All of these toxic effects can be attenuated by treatment with TDZD-8. These results suggest that remifentanil is able to induce C6 cell apoptosis through GSK-3β activation, which provides a basis for its potential use in the treatment of malignant gliomas.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

4

Opis fizyczny

p.494-506,fig.,ref.

Twórcy

autor
  • College of Medicine, Nankai University, Tianjin, 300071, China
autor
  • College of Medicine, Nankai University, Tianjin, 300071, China
autor
  • College of Medicine, Nankai University, Tianjin, 300071, China
autor
  • College of Medicine, Nankai University, Tianjin, 300071, China
autor
  • College of Medicine, Nankai University, Tianjin, 300071, China

Bibliografia

  • 1. Scott, C.B., Scarantino, C., Urtasun, R., Movsas, B., Jones, C.U., Simpson, J.R., Fischbach, A.J. and Curran, W.J., Jr. Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int. J. Radiat. Oncol. Biol. Phys. 40 (1998) 51-55.
  • 2. Bogler, O. and Weller, M. Apoptosis in gliomas, and its role in their current and future treatment. Front. Biosci. 7 (2002) 339-353.
  • 3. Hahnenkamp, K., Nollet, J., Van Aken, H.K., Buerkle, H., Halene, T., Schauerte, S., Hahnenkamp, A., Hollmann, M.W., Strumper, D., Durieux, M.E. and Hoenemann, C.W. Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes. Anesthesiology 100 (2004) 1531-1537.
  • 4. Guntz, E., Dumont, H., Roussel, C., Gall, D., Dufrasne, F., Cuvelier, L., Blum, D., Schiffmann, S.N. and Sosnowski, M. Effects of remifentanil on N-methyl-D-aspartate receptor: an electrophysiologic study in rat spinal cord. Anesthesiology 102 (2005) 1235-1241.
  • 5. Zhao, M. and Joo, D.T. Enhancement of spinal N-methyl-D-aspartate receptor function by remifentanil action at delta-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology 109 (2008) 308-317.
  • 6. Joly, V., Richebe, P., Guignard, B., Fletcher, D., Maurette, P., Sessler, D.I. and Chauvin, M. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. Anesthesiology 103 (2005) 147-155.
  • 7. Luo, H.R., Hattori, H., Hossain, M.A., Hester, L., Huang, Y., Lee-Kwon, W., Donowitz, M., Nagata, E. and Snyder, S.H. Akt as a mediator of cell death. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 11712-11717.
  • 8. De, Sarno. P., Bijur, G.N., Zmijewska, A.A., Li, X. and Jope, R.S. In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiol. Aging 27 (2006) 413-422.
  • 9. Svenningsson, P., Tzavara, E.T., Carruthers, R., Rachleff, I., Wattler, S., Nehls, M., McKinzie, D.L., Fienberg, A.A., Nomikos, G.G. and Greengard, P. Diverse psychotomimetics act through a common signaling pathway. Science 302 (2003) 1412-1415.
  • 10. Doble, B.W. and Woodgett, J.R. GSK-3: tricks of the trade for a multitasking kinase. J. Cell. Sci. 116 (2003) 1175-1186.
  • 11. Cohen, P. and Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. 3 (2004) 479-487.
  • 12. Watcharasit, P., Bijur, G.N., Song, L., Zhu, J., Chen, X. and Jope, R.S. Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J. Biol. Chem. 278 (2003) 48872-48879.
  • 13. Hetman, M., Cavanaugh, J.E., Kimelman, D. and Xia, Z. Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20 (2000) 2567-2574.
  • 14. Bijur, G.N., De, Sarno. P. and Jope, R.S. Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J. Biol. Chem. 275 (2000) 7583-7590.
  • 15. Hemmings, B.A., Yellowlees, D., Kernohan, J.C. and Cohen, P. Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Copurification with the activating factor (FA) of the (Mg-ATP) dependent protein phosphatase. Eur. J. Biochem. 119 (1981) 443-451.
  • 16. Huang, S.M., Cheung, C.W., Chang, C.S., Tang, C.H., Liu, J.F., Lin, Y.H., Chen, J.H., Ko, S.H., Wong, K.L. and Lu, D.Y. Phloroglucinol derivative MCPP induces cell apoptosis in human colon cancer. J. Cell. Biochem. 112 (2011) 643-652.
  • 17. Wang, Z., Smith, K.S., Murphy, M., Piloto, O., Somervaille, T.C. and Cleary, M.L. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 455 (2008) 1205-1209.
  • 18. Foltz, D.R., Santiago, M.C., Berechid, B.E. and Nye, J.S. Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr. Biol. 12 (2002) 1006-1011.
  • 19. Singler, B., Troster, A., Manering, N., Schuttler, J. and Koppert, W. Modulation of remifentanil-induced postinfusion hyperalgesia by propofol. Anesth. Analg. 104 (2007) 1397-1403.
  • 20. Benda, P., Lightbody, J., Sato, G., Levine, L. and Sweet, W. Differentiated rat glial cell strain in tissue culture. Science 161 (1968) 370-371.
  • 21. Auer, R.N., Del Maestro, R.F. and Anderson, R. A simple and reproducible experimental in vivo glioma model. Can. J. Neurol. Sci. 8 (1981) 325-331.
  • 22. Denizot, F. and Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89 (1986) 271-277.
  • 23. Martinez, A., Alonso, M., Castro, A., Perez, C. and Moreno, F.J. First nonATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease. J. Med. Chem. 45 (2002) 1292-1299.
  • 24. Hui, W., Litherland, G.J., Jefferson, M., Barter, M.J., Elias M.S., Cawston, T.E., Rowan, A.D. and Young, D.A. Lithium protects cartilage from cytokinemediated degradation by reducing collagen-degrading MMP production via inhibition of the P38 mitogen-activated protein kinase pathway. Rheumatology (Oxford) 49 (2010) 2043-2053.
  • 25. Shiu, L.Y., Liang, C.H., Huang, Y.S., Sheu, H.M. and Kuo, K.W. Downregulation of HER2/neu receptor by solamargine enhances anticancer drug-mediated cytotoxicity in breast cancer cells with high-expressing HER2/neu. Cell. Biol. Toxicol. 24 (2008) 1-10.
  • 26. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57-70.
  • 27. Mao, J., Price, D.D., Lu, J. and Mayer, D.J. Antinociceptive tolerance to the mu-opioid agonist DAMGO is dose-dependently reduced by MK-801 in rats. Neurosci. Lett. 250 (1998) 193-196.
  • 28. Chen, L. and Huang, L.Y. Sustained potentiation of NMDA receptormediated glutamate responses through activation of protein kinase C by a mu opioid. Neuron 7 (1991) 319-326.
  • 29. Ma, T., Zhao, Y., Kwak, Y.D., Yang, Z., Thompson, R., Luo, Z., Xu, H. and Liao, F.F. Statin's excitoprotection is mediated by sAPP and the subsequent attenuation of calpain-induced truncation events, likely via rho-ROCK signaling. J. Neurosci. 29 (2009) 11226-11236.
  • 30. Barth, A.I., Nathke, I.S. and Nelson, W.J. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr. Opin. Cell. Biol. 9 (1997) 683-690.
  • 31. Grimes, C.A. and Jope, R.S. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65 (2001) 391-426.
  • 32. Pap, M. and Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273 (1998) 19929-19932.
  • 33. Crowder, R.J. and Freeman, R.S. Glycogen synthase kinase-3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal. J. Biol. Chem. 275 (2000) 34266-34271.
  • 34. Korur, S., Huber, R.M., Sivasankaran, B., Petrich, M., Morin, P, Jr., Hemmings, B.A., Merlo, A. and Lino, M.M. GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS One 4 (2009) 7443.
  • 35. Tan, J., Zhuang, L., Leong, H.S., Iyer, N.G., Liu, E.T. and Yu, Q. Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 65 (2005) 9012-9020.
  • 36. Linseman, D.A., Butts, B.D., Precht, T.A., Phelps, R.A., Le, S.S., Laessig, T.A., Bouchard, R.J., Florez-McClure, M.L. and Heidenreich, K.A. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. 24 (2004) 9993-10002.
  • 37. Perez, M., Rojo, A.I., Wandosell, F., Diaz-Nido, J. and Avila, J. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochem. J. 372 (2003) 129-136.
  • 38. Bajic, V.P., Su, B., Lee, H.G., Kudo, W., Siedlak, S.L., Zivkovic, L., Spremo-Potparevic, B., Djelic, N., Milicevic, Z., Singh, A.K., Fahmy, L.M., Wang, X., Smith, M.A. and Zhu, X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cell. Mol. Biol. Lett. 16 (2011) 359-372.
  • 39. Cali, T., Ottolini, D. and Brini, M. Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium 52 (2012) 73-85.
  • 40. Vianna, P.T., Castiglia, Y.M., Braz, J.R., Viero, R.M., Beier, S., Vianna Filho, P.T., Vitoria, A., Reinoldes Bizarria Guilherme, G., de Assis Golim, M. and Deffune, E. Remifentanil, isoflurane, and preconditioning attenuate renal ischemia/reperfusion injury in rats. Transplant Proc. 41 (2009) 4080- 4082.
  • 41. Yang, L.Q., Tao, K.M., Liu, Y.T., Cheung, C.W., Irwin, M.G., Wong, G.T., Lv, H., Song, J.G., Wu, F.X. and Yu, W.F. Remifentanil preconditioning reduces hepatic ischemia-reperfusion injury in rats via inducible nitric oxide synthase expression. Anesthesiology 114 (2011) 1036-1047.
  • 42. Kim, H.S., Cho, J.E., Hong, S.W., Kim, S.O., Shim, J.K. and Kwak, Y.L. Remifentanil protects myocardium through activation of anti-apoptotic pathways of survival in ischemia-reperfused rat heart. Physiol. Res. 59 (2010) 347-356.
  • 43. Park, S.W., Yi, J.W., Kim, Y.M., Kang, J.M., Kim, D.O., Shin, M.S., Kim, C.J., Lee, D.I., Kim, D.H. and Lee, B.J. Remifentanil alleviates transient cerebral ischemia-induced memory impairment through suppression of apoptotic neuronal cell death in gerbils. Korean J. Anesthesiol. 61 (2011) 63-68.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-127ffea8-0c2f-426b-a962-5a272fd4edc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.