PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

The effect of diets containing raw and fermented faba beans on gut functioning and growth performance in young turkeys

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to evaluate the effects of partial replacement of soyabean meal (SBM) with 35% of raw or fermented faba beans (RFB and FFB, respectively) on the development of the gastrointestinal tract and growth performance in young turkeys. FB were fermented with Lactobacillus plantarum. In comparison with RFB, FFB had similar crude protein content, but lower NDF and higher ADF contents. Partial replacement of SBM with FB seeds led to a decrease in wheat content, and an increase in the contents of highprotein components (by approx. 22 percentage points) and soyabean oil (by 2.5 percentage points) in turkey diets. The dietary inclusion of RFB and FFB did not affect the viscosity of small intestinal digesta. In comparison with the SBM diet, the RFB diet significantly decreased the concentrations of ammonia and butyric acid, reduced the activities of some microbial enzymes in the caecal digesta, but did not affect the concentrations of putrefactive and total short chain fatty acids (SCFAs). In comparison with the RFB diet, the FFB diet did not improve the turkey growth performance, but had a positive impact on fermentation processes in the caeca, which was reflected in an increase in the total concentrations of SCFAs and a decrease in ammonia concentration in the caecal digesta. So, dietary supplementation with 35% of FB does not compromise the growth performance of turkeys from 1 to 8 weeks of age. Fermentation of FB with Lactobacillus plantarum improves selected parameters of caecal functioning, but does not improve the growth performance of young turkeys.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.65-73,ref.

Twórcy

autor
  • Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland
autor
  • Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland
autor
  • Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland
autor
  • Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland

Bibliografia

  • Amadou I., Amza T., Foh M.B.K., Kamara M.T., Le G.-W., 2010. Influence of Lactobacillus plantarum Lp6 fermentation on the functional properties of soybean protein meal. Emir. J. Food Agric. 22, 456–465, https://doi.org/10.9755/ejfa.v22i6.4663
  • AOAC International, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Gaithersburg, MD (USA)
  • Beaud D., Tailliez P., Anba-Mondolon J., 2005. Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151, 2323–2330, https://doi.org/10.1099/mic.0.27712-0
  • Bjergegaard Ch., Sørensen H., Sørensen S., 1997. Dietary fibres – important part of high quality food and feeds. J. Anim. Feed Sci. 6, 145–161, https://doi.org/10.22358/jafs/69513/1997
  • Chandra-Hioe M.V., Wong Ch.H.M., Arcot J., 2016. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant Foods Hum. Nutr. 71, 90–95, https://doi.org/10.1007/s11130-016-0532-y
  • Choct M., Dersjant-Li Y., McLeish J., Peisker M., 2010. Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australas. J. Anim. Sci. 23, 1386–1398, https://doi.org/10.5713/ajas.2010.90222
  • COBORU, 2011. Descriptive Register of Varieties. Part 2 (in Polish). Słupia Wielka (Poland)
  • De Blas C., García J., Carabaño R., 1999. Role of fibre in rabbit diets. a review. Ann. Zootech. 48, 3–13, https://doi.org/10.1051/animres:19990101
  • Doblado R., Frias J., Muñoz R., Vidal-Valverde C., 2003. Fermentation of Vigna sinensis var. carilla flours by natural microflora and Lactobacillus species. J. Food Protect. 66, 2313–2320, https://doi.org/10.4315/0362-028X-66.12.2313
  • Drażbo A., Mikulski D., Zduńczyk Z., Szmatowicz B., Rutkowski A., Jankowski J., 2014. Fatty acid composition, physicochemical and sensory properties of eggs from laying hens fed diets containing blue lupine seeds. Eur. Poult. Sci. 78, 1–14, https://doi.org/10.1399/eps.2014.61
  • El-Moghazy G.M., Sakr D.M., Abd El Ghafar N.M., 2011. Effect of fermentation of faba bean (Vicia faba) on its nutritive and sensory properties. J. Food Dairy Sci. 2, 237–250
  • Feng J., Liu X., Xu Z.R., Liu Y.Y., Lu Y.P., 2007. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134, 235–242, https://doi.org/10.1016/j.anifeedsci.2006.08.018
  • Frias J., Song Y.S., Martínez-Villaluenga C., De Mejia E.G., VidalValverde C., 2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 56, 99–105, https://doi.org/10.1021/jf072177j
  • Fru-Nji F., Niess E., Pfeffer E., 2007. Effect of graded replacement of soybean meal by faba beans (Vicia faba L.) or field peas (Pisum sativum L.) in rations for laying hens on egg production and quality. J. Poult. Sci. 44, 34–41, https://doi.org/10.2141/jpsa.44.34
  • Gous R.M., 2011. Evaluation of faba bean (Vicia faba cv. Fiord) as a protein source for broilers. S. Afr. J. Anim. Sci. 41, 71–78, https://doi.org/10.4314/sajas.v41i2.71009
  • Hejdysz M., Kaczmarek S.A., Rutkowski A., 2016. Extrusion cooking improves the metabolisable energy of faba beans and the amino acid digestibility in broilers. Anim. Feed Sci. Technol. 212, 100–111, https://doi.org/10.1016/j.anifeedsci.2015.12.008
  • Helsper J.P.F.G., van Loon Y.P.J., Kwakkel R.P., van Norel A., van der PoelA.F.B., 1996. Growth of broiler chicks fed diets containing tannin-free and tannin-containing near-isogenic lines of faba bean (Vicia faba L.). J. Agric. Food Chem. 44, 1070–1075, https://doi.org/10.1021/jf950484w
  • Hirabayashi M., Matsui T., Yano H., Nakajima T., 1998. Fermentation of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poult. Sci. 77, 552–556, https://doi.org/10.1093/ps/77.4.552
  • Hofírek B., Haas D., 2001. Comparative studies of ruminal fluid collected by stomach tube or by puncture of the caudoventral ruminal sac. Acta Vet. Brno 70, 27–33, https://doi.org/10.2754/avb200170010027
  • Hotz C., Gibson R.S., 2007. Traditional food-processing and preparation practices to enhancing the bioavailability of micronutrients in plant-based diets. J. Nutr. 137, 1097–1100, https://doi.org/10.1093/jn/137.4.1097
  • Hu Y., Wang Y., Li A., Wang Z., Zhang X., Yun T, Qiu L., Yin Y., 2016. Effect of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food Agric. Immunol. 27, 182–193, https://doi.org/10.1080/09540105.2015.1079592
  • Hybrid Turkey, 2014. Nutrient Guidelines (accessed 10.08.16) http://www.resources.hybridturkeys.com/nutrition/commercialguidelines
  • Jamroz D., Jakobsen K., Bach Knudsen K.E., WiliczkiewiczA., Orda J., 2002. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp. Biochem. Physiol. a Mol. Integr. Physiol. 131, 657–668, https://doi.org/10.1016/S1095-6433(01)00517-7
  • Jankowski J., Juskiewicz J., Gulewicz K., Lecewicz A., Slominski B.A., Zdunczyk Z., 2009. The effect of diets containing soybean meal, soybean protein concentrate, and soybean protein isolate of different oligosaccharide content on growth performance and gut function of young turkeys. Poult. Sci. 88, 2132–2140, https://doi.org/10.3382/ps.2009-00066
  • Juśkiewicz J., Zduńczyk Z., Żary-Sikorska E., Król B., Milala J., Jurgoński A., 2011. Effect of dietary polyphenolic fraction of chicory root, peel, seed and leaf extracts on caecal fermentation and blood parameters in rats fed diets containing prebiotic fructans. Br. J. Nutr. 105, 710–720, https://doi.org/10.1017/S0007114510004344
  • Kostulak-Zielińska M., Potkański A., 2001. Quality of baled grass-clover silages ensiled with chemical additives. Chemical composition. Ann. Anim. Sci. 1, 153–165
  • Laudadio V., Ceci E., Tufarelli V., 2011. Productive traits and meat fatty acid profile of broiler chickens fed diets containing micronized fava beans (Vicia faba L. var. minor) as the main protein source. J. Appl. Poult. Res. 20, 12–20, https://doi.org/10.3382/japr.2010-00173
  • Liang D., 2000. Effect of enzyme supplementation on the nutritive value of canola meal for broilers chickens. Master of Science Thesis. University of Manitoba. Winnipeg (Canada)
  • Liu S.-n., Han Y., Zhou Z.J., 2011. Lactic acid bacteria in traditional fermented Chinese foods. Food Res. Int. 44, 643–651, https://doi.org/10.1016/j.foodres.2010.12.034
  • Moschini M., Masoero F., Prandini A., Fusconi G., Morlacchini M., Piva G., 2005. Raw pea (Pisum sativum), raw faba bean (Vicia faba var. minor) and raw lupin (Lupinus albus var. multitalia) as alternative protein sources in broiler diets. Ital. J. Anim. Sci. 4, 59–69, https://doi.org/10.4081/ijas.2005.59
  • Mukherjee R., Chakraborty R., Abhishek D., 2016. Role of fermentation in improving nutritional quality of soybean meal – a review. Asian-Australas. J. Anim. Sci. 29, 1523–1529, https://doi.org/10.5713/ajas.15.0627
  • Nalle C.L., Ravindran V., Ravindran G., 2010. Nutritional value of faba bean (Vicia faba L.) for broiler: Apparent metabolisable energy, ileal amino acid digestibility and production performance. Anim. Feed Sci. Technol. 156, 104–111, https://doi.org/10.1016/j.anifeedsci.2010.01.010
  • Przywitowski M., Mikulski D., Zdunczyk Z., Rogiewicz A., Jankowski J., 2016. The effect of dietary high-tannin and low-tannin faba bean (Vicia faba L.) on the growth performance, carcass traits and breast meat characteristic of finisher turkeys. Anim. Feed Sci. Technol. 221, 124–136, https://doi.org/10.1016/j.anifeedsci.2016.08.027
  • Quigley E.M.M., 2011. Microflora modulation of motility. J. Neurogastroenterol. Motil. 17, 140–147, https://doi.org/10.5056/jnm.2011.17.2.140
  • Rozan P., Villaum C., Bau H.M., Schwertz A., Nicolas J.P., Méjean L., 1996. Detoxication of rapeseed meal by Rhizopus Oligosporus sp-T3: a first step towards rapeseed protein concentrate. Int. J. Food Sci. Technol. 31, 85–90, https://doi.org/10.1111/j.1365-2621.1996.17-315.x
  • StatSoft Inc., 2011. Statistica (Data Analysis Software System). Version 10. http:// www.statsoft.com
  • Teng D., Gao M., Yang Y., Liu B., Tian Z., Wang J., 2012. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol. 1, 32–38, https://doi.org/10.1016/j.bcab.2011.08.005
  • Zduńczyk Z., Jankowski J. Mikulski D., Mikulska M., Lamparski G., Slominski B.A., Juśkiewicz J., 2014a. Growth performance, gastrointestinal function and meat quality in growing-finishing turkeys fed diets with different levels of yellow lupine (L. luteus) seeds. Arch. Anim. Nutr. 68, 211–226, https://doi.org/10.1080/1745039X.2014.920642
  • Zdunczyk Z., Jankowski J., Mikulski D., Przybylska-Gornowicz B., Sosnowska E., Juskiewicz J., 2013. Gastrointestinal morphology and function in turkeys fed diets diluted with whole grain wheat. Poult. Sci. 92, 1799–1811, https://doi.org/10.3382/ps.2012-02482
  • Zdunczyk Z., Jankowski J., Rutkowski A., Sosnowska E., Drazbo A., Zdunczyk P., Juskiewicz J., 2014b. The composition of enzymatic activity of gut microbiota in laying hens fed diets supplemented with blue lupine seeds. Anim. Feed Sci. Technol. 191, 57–66, https://doi.org/10.1016/j.anifeedsci.2014.01.016

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-106e2d0e-dc9d-47f5-81ce-aaa0f38b97a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.